Research

Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

Zhuo Guan, Lauren K. Buhl, William G. Quinn, and J. Troy Littleton

Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ~375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila.

[Supplemental material is available for this article.]
molecular link to the poorly understood ARM phase of long-term memory. The rsh gene has been identified as CG15720 by comparative sequencing of genomic DNA from rsh and controls and is confirmed by phenotypic rescue (Folkers et al. 2006). rsh encodes a novel serine/arginine-rich protein with 23 predicted PKA phosphorylation sites, but lacks other regions of homology to suggest a specific function. Radish has also been reported to bind Rac1 (Formstecher et al. 2005), a transducer protein implicated in an active mechanism of forgetting in Drosophila (Shuai et al. 2010). rsh mutant flies show normal initial learning, but their memory rapidly decays within 8 h following training (Folkers et al. 1993). rsh mutant flies that have been anesthetized soon after training lack anesthesia-resistant memory (Folkers et al. 1993), demonstrating that the locus encodes a key molecular component of the ARM pathway. Understanding the function of the Radish protein and the signaling pathway it regulates is critical to dissecting the molecular underpinnings of this phase of memory.

To characterize the Radish-dependent ARM pathway and its link to cAMP signaling, we compared synaptic connectivity in rut, dnc, amn, and rsh mutants. Like rut, dnc, and amn, rsh mutants displayed altered synaptic connectivity, suggesting a link between anesthesia-resistant memory storage and synaptic rewiring. We also show that Radish is a PKA target in vitro and localizes to the cytoplasm and nucleus. Genome-wide microarray analysis identified several altered transcriptional targets that are both shared and divergent in the STM and ARM mutants. Approximately 375 genes implicated in membrane excitability, synaptic transmission, cytoskeletal regulation, cell adhesion, and cellular signaling were differentially regulated in the mutants. We characterized one of these transcriptional targets, Lapryn (CG15658), in greater detail. Lapryn encodes a neuronal cell adhesion leucine-rich repeat (LRR) protein that localizes to synapses and regulates synaptic connectivity, suggesting a potential role in learning-induced synaptic modification.

Results

Altered synaptic morphology in learning and memory mutants

Genetic analysis of learning and memory mutants in Drosophila has identified distinct components of learning: STM, middle-term memory (MTM), ARM, and LLTM (Fig. 1A). dnc and rut are involved in the formation of STM, which consists of memory during the first 30 min after training, whereas the amn neuropeptide is involved in the formation of MTM, which occurs between 30 min and 3 h after training. rsh is required for ARM, and the CREB pathway mediates LLTM. Understanding how these mutants alter the function and structure of synapses may provide insight into the mechanisms of memory consolidation. To evaluate neuronal structure in these learning and memory mutants, we analyzed synaptic connectivity patterns at the well-characterized 3rd instar larval NMJ in rut, dnc, and amn mutants and compared them with Canton S (CS) controls (Fig. 1B–C). Previous studies had suggested defects in synaptic morphology in dnc and rut (Zhong and Wu 1991; Renger et al. 2000). We quantified axonal branching,innervation length along the muscle and synaptic varicosity number at NMJs at muscles 6 and 7 by performing immunocytochemistry on wandering 3rd instar larvae with anti-Synaptotagmin I or anti-Complexin antibodies. All of the mutants were found to alter connectivity patterns compared with controls. rut mutants showed a 28% decrease in synaptic varicosity number when normalized to muscle surface area (P < 0.005, Student’s t-test). In addition, they displayed a 29% decrease in axonal branch number (P < 0.001) and a 20% decrease in innervation length (P < 0.01). dnc mutants displayed a 33% increase in varicosity number normalized to muscle surface area (P < 0.01). Our findings in dnc and rut are similar to previous observations (Zhong and Wu 1991; Renger et al. 2000). The amn mutant showed a 19% decrease in axonal branch number compared with controls (P < 0.05) without affecting synaptic varicosity number or innervation length. These results suggest that learning and memory mutants disrupting STM and MTM have altered synaptic connectivity patterns at larval NMJs.

Radish regulates synaptic connectivity and encodes a PKA substrate that localizes to the cytoplasm and nucleus

The Radish protein is encoded by CG15720 and contains 23 predicted PKA phosphorylation sites and five bipartite nuclear localization signals (NLSs), which overlap with several of the PKA sites (Folkers et al. 2006). How the Radish protein contributes to ARM is unknown. The prominent role of PKA in Drosophila learning and memory suggests that PKA activation during the initial phases of memory may directly impinge upon Radish function, providing a transition from short- to long-term memory storage mechanisms, similar to the PKA–CREB link in LLTM. Based on the predicted PKA sites contained in the Radish protein, we assayed whether Radish was as a PKA target in vitro. Full-length Radish proved difficult to purify as a recombinant protein. To overcome these difficulties in protein stability, we generated a recombinant GST–Radish fusion protein from a 102-residue fragment (Ala 383 to Pro 484) predicted to be surface exposed and containing six predicted PKA sites. We assayed phosphorylation of this fragment in vitro assays with recombinant PKA. GST–Radish underwent PKA-dependent phosphorylation, whereas GST alone was not phosphorylated by PKA (Fig. 2A), suggesting that Radish function may be regulated through the cAMP–PKA signaling pathway.

Given that rut, dnc, and amn mutants alter synaptic connectivity at the larval NMJ, we assayed whether axonal branching and synapse formation might be altered in rsh mutants as well (Fig. 2B–D). Compared with CS, rsh mutants displayed a 21% increase in varicosity number (P < 0.001) (Fig. 2B) and a 15% decrease in innervation length (P < 0.05) (Fig. 2C), resulting in a compact innervation pattern at the NMJ. These results indicate that rsh mutants have altered axonal branching and synaptic growth.

To analyze the cellular compartment in which the Radish protein may function to regulate ARM and synaptic connectivity, we generated UAS-rsh-GFP transgenes and evaluated Radish localization in transgenic animals. Previous analysis of Radish immunoreactivity revealed neuropil staining in the calyx, peduncle, and lobes of the mushroom bodies (Folkers et al. 2006), suggesting localization to synapses. The presence of multiple NLSs within the protein suggests Radish might also act in the nucleus. Transgenic animals expressing UAS-rsh-GFP in larval salivary glands showed prominent nuclear accumulation of Radish–GFP, overlapping with DAPI staining (Fig. 2E,F). Weaker staining in the cytoplasm of salivary gland cells was also observed (Fig. 2E). Similarly, we observed robust nuclear accumulation of Radish–GFP when driven with the muscle driver mef2-GAL4 (Fig. 2G). When the pan-neuronal elavGAL4-GAL4 driver was used to express UAS-rsh-GFP in the brain, Radish was observed in the cytoplasm of neuronal cell bodies and in larval axons (Fig. 2H). Staining in presynaptic terminals was not readily apparent. These data suggest that Radish can localize to both the cytoplasm and nucleus, depending on cell type. Given the weak homology of Radish to arginine/serine-rich RNA-splicing factors and the overlap of several NLS and PKA phosphorylation sites, an attractive hypothesis is that the protein might shuttle in and out of the nucleus in a PKA-dependent manner to regulate mRNA splicing, stability, or
localization. Future studies will be required to determine whether and how PKA alters the distribution of Radish within neurons.

Microarray analysis shows altered transcription in Drosophila learning and memory mutants

Based on the synaptic connectivity defects at larval NMJs observed in dnc1, rut1, amn1, and rsh1 mutants, we were interested in exploring how altered transcription might contribute to these phenotypes. To identify transcriptional changes in the brain, we used Affymetrix DNA microarray chips to detect differences in gene expression in the mutants compared with CS controls using triplicate chips for each genotype (Fig. 3A). We isolated total RNA from 600 pooled heads for each chip to enrich for neuronal transcripts and reduce individual variability in gene expression. RNA was extracted from 3–4 d old males reared at 22°C and sacrificed at the same time of day (2–4 PM) to reduce circadian gene expression changes. The Affymetrix Drosophila chip covers most of the ~14,000 ORFs in the genome. We analyzed transcripts whose mRNA signal strength was called as present (P) or marginal (M) on at least one of the three chips. Using this criterion, we detected ~50% of known Drosophila genes in adult male heads (Supplemental Table 1). We probed for expression differences between chips for each mutant using statistical algorithms included in the Affymetrix Microarray Suite MAS 5.0 software, as well as Student’s t-test and the Mann-Whitney U-test. For each differentially expressed transcript, we required a P-value, 0.05, a 50% or greater change in gene expression between strains, and signal strength called as present (P) or marginal (M) on at least one chip (Supplemental Table 2).

To functionally categorize the differentially expressed genes, we performed DAVID (The Database for Annotation, Visualization, and Integrated Discovery) analysis with the gene ID conversion tool. Each altered gene was subsequently checked by BLAST analysis to identify homologs and previously characterized structural domains. The genes were categorized according to known or
Figure 2. Characterization of Radish localization and function. (A) Phosphorylation of a Radish protein fragment (amino acids 383–484) by the catalytic subunit of PKA. Ten micrograms of recombinant GST alone (green arrowhead) or GST–Radish (black arrowhead) was incubated with 0.5 μg of the PKA catalytic subunit in the presence of [γ-32P]ATP. Coomassie staining of the SDS-PAGE gel is shown at top, and the bottom panel shows the autoradiograph. (B) Quantification of average varicosity number at muscles 6/7 NMJs in segment A3 in 3rd instar CS or rsh1. Average varicosity number was significantly increased in rsh1 (99.2 ± 3.2, n = 14) compared with CS (82.2 ± 2.1, n = 11). (*** P-value of Student’s t-test (P < 0.001). Error bars represent SEM. (C) Quantification of average innervation length normalized to muscle surface length at muscles 6/7 NMJs in segments A3–A5 in 3rd instar CS or rsh1 larvae. Innervation length was significantly decreased in rsh1 mutants (0.27 ± 0.014, n = 39) compared with CS (0.36 ± 0.017, n = 27). (∗ P-value of Student’s t-test (P < 0.05). Error bars represent SEM. (D) Immunocytochemistry with anti-Complexin antiserum on muscles 6/7 NMJs in segment A3 in 3rd instar larvae. (E,F) Expression of UAS-rsh-GFP by elavC155-GAL4 in 3rd instar larvae. (E) Radish–GFP was concentrated in the nucleus of salivary gland cells compared with GFP alone. (F) Colocalization of Radish–GFP and DAPI in the nucleus of salivary gland cells. (G) Radish–GFP was concentrated in the nucleus of muscle cells when driven by the Mef2-GAL4 driver. Nuclei were counterstained with SYTO orange (shown in magenta). (H) Radish–GFP localized to neuronal cell bodies in the ventral nerve cord and axons (arrows) in 3rd instar larvae. (Middle) A magnified view of the framed area in the left panel. (Right) Radish–GFP in nerve bundles (arrows) exiting the ventral nerve cord. Nuclei were counterstained with SYTO orange (shown in magenta).
putative functions based on sequence similarity as indicated in Supplemental Table 2. The number of altered genes in individual functional classes for each genotype is shown in Figure 3B. We identified more differentially expressed genes in *rut* \(^1\) (158) and *rsh* \(^1\) (153) mutants than in *dnc* \(^1\) (89) and *amn* \(^1\) (70) mutants. Gene products with predicted roles in membrane excitability in *rut* \(^1\) (2.18%) and *amn* \(^1\) (1.72%), and in cell adhesion in *dnc* \(^1\) (2.4%) and *rsh* \(^1\) (4%), were more likely to be transcriptionally regulated compared with other functional categories (Fig. 3B; Supplemental Fig. 1). We focused on the analysis and verification of altered genes predicted to be involved in membrane excitability, synaptic transmission, cytoskeletal regulation, cell adhesion, and cell signaling, as these pathways have been linked to synaptic plasticity.

Figure 3. Microarray analysis of learning and memory mutants. (A) Comparison matrix used for the microarray analysis. (B) Distribution of transcriptionally altered genes identified by genome-wide microarray screens according to the functional category for each genotype. (C) Summary graphs of real-time quantitative RT–PCR results for a subset of the altered gene products. *P*-values for Student’s *t*-test: (*) \(P < 0.05; ** *) \(P < 0.01; (***) \(P < 0.001. Error bars represent SEM. Four trials were run for each indicated genotype. (D) In situ hybridization on adult CS and *rut* \(^1\) brain sections with *mthl8* cRNA probes. *mthl8* was up-regulated in neuronal cell bodies (arrowhead) and in visual system neurons (arrow) in *rut* \(^1\) compared with CS. A sense strand *mthl8* cRNA probe was used as a negative control.

www.learnmem.org 195 Learning & Memory

Cold Spring Harbor Laboratory Press on March 23, 2011 - Published by learnmem.cshlp.org
Altered transcription detected in *rutabaga* mutants

Among the genes abnormally expressed in *rut* mutants was the catalytic subunit of PKA (Pka-C1, also known as DCO), which was up-regulated 1.5-fold. Mutations in PKA lead to learning and memory deficits (Skoulakis et al. 1993), whereas up-regulation of PKA function modulates synaptic growth (Yoshihara et al. 2005). *Adh transcription factor 1* (Adf1), which encodes a Myb-related transcription factor, was also up-regulated in *rut* mutants. Notably, *Naloyt* (na1), a hypomorphic allele of Adf1, shows mild deficits in STM, severe defects in LTM, and reduced synaptic growth (DeZazzo et al. 2000). Other interesting signaling components altered in *rut* mutants included *GTPase-activating protein 1* (Gap1), a negative regulator of Ras in RTK signaling (Gaul et al. 1992); *Dorsal* (dl), encoding an NF-kB transcription factor that regulates mushroom body formation (Nicolai et al. 2003) and synaptic growth (Cantera et al. 1999); *Med11*, an RNA polymerase II transcriptional regulator that controls dendritic branching (Parrish et al. 2006); and *chn3*, a Drosophila homolog of the human *chn3* gene mutations that cause the neurodegenerative disorder juvenile neuronal ceroid lipofuscinosis.

Beyond signaling components, we detected altered transcription of several other gene classes in *rut* mutants. Among the transcriptionally altered genes regulating membrane excitability and synaptic communication were *Nervana 2* (nr2v), a β subunit of the sodium/potassium ATPase; *NMDA1*, which encodes the Type 1 Drosophila NMDA receptor homolog; *Syt 7*, a high-affinity calcium sensor of the synaptotagmin family; *lap*, the AP-180 homolog that regulates clathrin-mediated endocytosis; *α-SNAP*, a soluble N-ethylmaleimide-sensitive (NSF) attachment protein; *CG3822*, a predicted kainite-selective glutamate receptor; *S-HT7*, a serotonin receptor; and *ebony* (e), which regulates dopamine formation. Gene products implicated in cytoskeletal dynamics were also altered, including *diaphanous* (dia), a regulator of actin polymerization that modulates synaptic growth (Pawson et al. 2008); *Ciboulout* (cib), which participates in actin filament assembly and brain development; and *CG6480*, the Drosophila homolog of human facioscapulohumeral muscular dystrophy region gene 1 (fgs-1). Loci with predicted functions in cell adhesion were also misregulated, including the leucine-rich repeat (LRR) domain transmembrane proteins, *CG15658* and *CG18249*. Finally, several components of the RNA-induced silencing complex (RISC) were altered, including *Vasa intronic gene* (vig) and *argonaute 2* (ag02).

Altered transcription detected in *dunce* mutants

Given that *dnc* and *rut* mutants have opposite effects on cAMP levels, we expected to find distinct transcriptional changes, along with some conserved changes. Only a few transcripts were altered in both *rut* and *dnc* mutants, including *S-HT7*, cib, and *mthl8* (a Methuselah-like G protein coupled receptor). Among the unique genes that were changed in *dnc* mutants was *Tequila*, a neurotrophin serine protease transcriptionally induced by learning stimuli and required for LTM (Didelot et al. 2006). Other transcripts altered in *dnc* mutants were *tan* (t), a β-alanyl-dopamine hydrolase; *Punch* (Ptu), a GTP cyclohydrolase; *CG4587*, an α2δ calcium channel subunit; *neurexin IV* (NrX-IV), a glial-enriched cell surface protein; *Tera*, an EGF-containing transmembrane protein enriched on developing axons; and *hairless* (H), a regulator of Notch signaling (Supplemental Table 2).

Altered transcription in *amnesiac* mutants

amn mutants showed the least altered transcriptional profile of the mutants evaluated. Among the up-regulated transcripts we detected in *amn* was *Frequenin 2* (frq2), a neuronal calcium sensor 1 (NCS-1) homolog shown to regulate synaptic connectivity and synaptic transmission (Dason et al. 2009). Calcium/calmodulin-dependent protein kinase (Caki, also called Camguk or CASK) was also up-regulated in *amn*. Caki acts as a gain control for a CaMKII-dependent molecular switch during activity-dependent plasticity in *Drosophila* (Lu et al. 2003; Hodge et al. 2006). *Rpd3*, a histone deacetylase homolog of mammalian HDAc1, was down-regulated in *amn*. Several genes controlling membrane excitability and neuronal signaling were also altered, including GABA-B receptor subtype 3 (GABA-B-R3); *Shaking B* (shakB), a Drosophila *innexin* required for gap junction formation; *Tomosyn*, a regulator of synaptic vesicle fusion; *Split ends* (spen), a transcriptional co-pressor that regulates neuronal development; *Ral guanine nucleotide exchange factor* (Rgl), a RalGEF homolog implicated in synaptogenesis (Liebl et al. 2006); and *roughoid* (ru, also termed *rhomboid 3*), a serine-type peptidase involved in the EGF pathway.

Altered transcripts observed in *radish* mutants

Given that *rsh* is the least characterized regulator of memory formation at the molecular level among the mutants we analyzed, we were interested to see whether *rsh* had a particular transcriptional profile that would distinguish it from the STM and MTM mutants. Genes that were altered in both *rsh* and the other learning mutants were *Caki*, *AGO2*, *nr2v*, *dia*, *dl*, *CG15658*, *Lk6*, *CG7607*, *mthl8*, and *Rgl*. Among the genes uniquely altered in *rsh* was the up-regulated transcript *rugose* (rg), which encodes a PKA anchor protein (DAKAP50) required for later stages of memory formation in *Drosophila* (Schwaerzel et al. 2007). *Adenyly cyclase 35C* (*Ac13E*), another component of the cAMP pathway, was also up-regulated in *rsh*. In addition to these loci, a number of genes involved in synaptic transmission and membrane excitability were altered. The *Shaker* (*Sh*) voltage-dependent potassium channel encoding *l* was up-regulated in *rsh*. Shaker has well-established roles in the regulation of neurotransmitter release and synaptic growth (Jan et al. 1977; Ganetzky and Wu 1982; Budnik et al. 1990), and *Sh* mutants display deficits in olfactory learning (Cowan and Siegel 1986; Dubnau and Tully 1998). *Open rectifier K+ channel 1* (*Ork1*), a potassium-selective leak channel (Goldstein et al. 1996), and *Rim*, a Rab3-interacting active zone protein previously implicated in LTP (Castillo et al. 2002), were also altered in *rsh*. We identified transcriptional changes in several genes involved in cytoskeletal regulation or cell adhesion, including *Disabled* (Dab), which encodes a protein that colocalizes with Ableson kinase (AbI) in axons (Gertler et al. 1993); *Grip163*, a γ-tubulin ring complex (γTuRC) subunit involved in microtubule nucleation (Gunnawardane et al. 2000); and *capping protein B* (*cphb*), an F-actin capping protein subunit (Delalle et al. 2005). In addition, we detected changes in transcripts for *spire* (*spir*), an actin nucleation protein; *sticks and stones* (*ssn*), a cell-adhesion protein with eight Ig domains and a fibronectin type III domain; *gliolectin* (*glec*), a carbohydrate-binding protein found in glia; and *beat-Vb*, an Ig domain-containing protein expressed in the CNS.

A number of loci regulating cell signaling were also altered in *rsh*. These transcripts included *CG11399*, the *Drosophila* ortholog of human phosphorylated carboxy-terminal domain (CTD) interacting factor 1 (PCIF1). The PCIF1 protein regulates mRNA synthesis through interactions between its WW domain and hyperphosphorylated RNA polymerase II (Fan et al. 2003). Overexpression of *CG11399* induces a Notch gain-of-function phenotype (Bejarano et al. 2008), suggesting that *CG11399* may modulate the transcription of mRNAs involved in Notch signaling, *SHPXI*, which encodes an SH3-PHox domain-containing protein (Kurten et al. 1996; Howard et al. 1999; Worby et al. 2001) that is a component of the DSCAM (Down syndrome cell
adhesion molecule) complex (Clemens et al. 2000; Worby et al. 2001), was also up-regulated. Drosophila SH3P1X1 can interact directly with WASp (Worby et al. 2001), suggesting that it may link DSCAM signaling to WASP regulation of the actin cytoskeleton. Protein tyrosine phosphatase 61F (ptp61F), an ortholog of mammalian PTBIB, a nontransmembrane tyrosine phosphatase, was down-regulated by 4.7-fold. Ptp61F/PTBIB is expressed in the Drosophila CNS and acts as a negative regulator of JAK/STAK signaling (Baeg et al. 2005). It also functions with Ablesin kinase interacting protein (Abi) to regulate lamellipodial structure through the SCAR/WAVE complex (Huang et al. 2007). Also down-regulated were protein phosphatase 2A at 29B (Pp2A-29B), Elongator protein 3 (ELP3), which has been implicated in RNA processing and neurodegeneration (Simpson et al. 2009), and Protein Phosphatase 2C (CG17746), a regulator of JNK signaling. Future studies will be needed to assess how the altered transcriptional profiles found in the learning and memory mutants contribute to their underlying behavioral and synaptic defects.

Verification of a subset of the transcriptional targets

To begin verifying the transcriptional profiles obtained by microarray analysis, we analyzed a subset of the identified genes using real-time quantitative RT–PCR and semi-quantitative RT–PCR (Fig. 3C). We chose 15 transcripts for quantitative PCR verification, including both up-regulated and down-regulated gene products. Of the 15 transcripts assayed, 12 showed similar changes by quantitative RT–PCR as reported by the microarrays (Fig. 3C; Supplemental Fig. 2). Three transcripts, including S-HT7 (Fig. 3C; Supplemental Fig. 2), CG3775, and CG6852, showed no change, indicating an ~80% concordance rate between our quantitative RT–PCR and microarray results, based on this smaller set.

We previously performed an extensive microarray analysis of activity-regulated transcripts using temperature-sensitive Drosophila hyper- and hypo-excitability mutants and control animals treated with epileptic drugs (Guan et al. 2005). In that analysis, a few transcripts were identified that displayed bidirectional modification by increased or decreased activity. One such transcript was mthl8, a Methuselah-like G-protein coupled receptor, which we found to be up-regulated in rut1, dnc1, and amn1 mutants (Supplemental Table 2). We analyzed the up-regulation of mthl8 by performing in situ expression analysis on adult head sections and compared expression patterns between rut1 and controls. mthl8 was present at low levels throughout the nervous system in CS brains, but was broadly up-regulated in rut1 brains (Fig. 3D), indicating mthl8 transcription is directionally controlled by the levels of neuronal activity and is up-regulated in several learning and memory mutants.

Characterization of the Lapsyn cell adhesion protein

Our microarray analysis identified ~375 altered genes, encompassing several functional classes. Only 8% (30 genes) of the loci identified in this study overlapped with our previous analysis of activity-related genes in the Drosophila brain (Guan et al. 2005; Supplemental Table 2). Given the role of enhanced neuronal activity in driving synaptic plasticity, this subgroup of overlapping genes was of particular interest. Among the genes found to be transcriptionally altered in both learning and memory mutants and by changes in neuronal activity were the soluble growth factor ldgf1, the FGF receptor ligand Bnl, the PKC homolog inac3, AO2Z of the RNAi silencing complex, the LkK serine/threonine kinase, the vesicle fusion regulator a-SNAP, and the cell adhesion proteins CG15658 and CG7607. In view of the connection between increased neuronal activity, synaptic plasticity, and altered neuronal connectivity, we were interested in further characterizing gene products that might contribute to the synaptic structural changes observed in the learning and memory mutants evaluated. We focused on the CG15658 locus, which encodes a cell adhesion molecule with four leucine-rich repeat (LRR) extracellular domains (Fig. 4A). We termed the CG15658 protein Lapsyn (Leucine-rich repeat activity-regulated protein at synapses) to reflect its activity regulation and structural motifs. Lapsyn has not been previously characterized and has no known function. Lapsyn RNA levels were altered both in activity-dependent seizure mutants and in the learning and memory mutants rut1 and rsh1, prompting us to test whether it might regulate synaptic connectivity.

Lapsyn displays homology to several mammalian proteins in its extracellular domain, with 29% identity and 52% similarity to the netrin-G ligand (NGL) family in mammals. Unlike its conserved extracellular LRR domains, the short intracellular C terminus of Lapsyn lacks homology to known proteins. To confirm the changes in mRNA levels observed by microarray analysis (Lapsyn was up-regulated in the hyperexcitability temperature-sensitive mutants se1L (2.1, P < 0.001), sl6L (2.7, P < 0.01), zydeco (2.3, P < 0.05), and jive (2, P < 0.001)), we performed semiquantitative RT–PCR in the activity mutants following a temperature-shock paradigm with a 30-min recovery period (Fig. 4B) or a 24-hour recovery period (Fig. 4C). Lapsyn was up-regulated in the activity mutants tested under both conditions. We also analyzed Lapsyn expression levels by semiquantitative RT–PCR in the learning and memory mutants and found it to be up-regulated in rut1 and rsh1, but not in amn1 and dnc1 (Figs. 3C, 4D; Supplemental Fig. 2), consistent with the microarray data.

To examine Lapsyn mRNA expression, we performed in situ hybridization on embryos with antisense and control sense probes. Lapsyn was expressed early in development at stage 5 in vitellophages, with expression detected later in the developing midgut and hindgut (Supplemental Fig. 3). mRNA expression in other tissues was low or not detected in CS embryos. We next assayed Lapsyn mRNA expression by in situ hybridization on adult brain sections (Fig. 4E). The endogenous expression level was low in CS animals, although expression was detected throughout the brain rind, where neuronal cell bodies are found in Drosophila. Lapsyn mRNA levels were up-regulated in se1L mutants, with increased expression observed in the medulla region of the visual system and in cell bodies in the dorsal brain rind (Fig. 4C). These data suggest Lapsyn is normally expressed at low levels, but is up-regulated in the nervous system by elevated neuronal activity.

To localize the Lapsyn protein, we generated antisense against a recombinant N-terminal extracellular sequence of Lapsyn fused to GST. The antisense did not recognize endogenous protein by Western blot analysis. We next tested whether the antisense would recognize overexpressed Lapsyn by generating transgenic flies expressing UAS-Lapsyn, allowing transcriptional control using a GAL4 transcriptional activator. Our antisense detected overexpressed Lapsyn by Western blot analysis (Fig. 4F), but not by tissue immunostaining. As a second approach to evaluate Lapsyn localization, we generated UAS-Lapsyn-GFP transgenic lines. The overexpressed GFP-tagged Lapsyn was detectable by both anti-Lapsyn and anti-GFP antibodies when driven by elav-GAL4 (Fig. 4F). Lapsyn-GFP was abundant in neuronal cell bodies in the brain and ventral nerve cord, and in axons of visual neurons projecting into the laminar plexus of the developing eye disk (Supplemental Fig. 4). At larval NMJs, Lapsyn–GFP accumulated in presynaptic terminals, colocalizing with other presynaptic markers such as the synaptic protein Complexin (Fig. 4G). At higher resolution, Lapsyn–GFP was present in punctate structures present on or near the presynaptic plasma membrane (Fig. 4H). We suspected these structures might be presynaptic active zones, which are sites of synaptic
Anti-Complexin antiserum was used as a loading control. (Representative gel and quantification of average active zone marker anti-Fas2. Following genotypes were tested: CS, 11.3 ± 4.8, 5.4-fold, $P < 0.001$; seite110 (seit2030), 27.6 ± 2.3, 2.3-fold, $P < 0.001$; seite111 (sei2030), 19.8 ± 2.6, 1.8-fold, $P < 0.05$; ATPase205 (DTS12030), 14 ± 2.2, no change. P-values for Student’s t-test: (*) $P < 0.05$; (**) $P < 0.001$; (***))

Figure 4. Lapsyn expression and localization at synapses. (A) Domain structure of Lapsyn. (B) Representative gels and quantification of average Lapsyn mRNA expression in temperature-sensitive (TS) seizure mutants compared with CS following a 20-min heat shock and 30-min recovery period. The following genotypes were tested: CS, 11.3 ± 4.8 relative intensity; seite110 (seit2030), 52.1 ± 4.6, 4.6-fold increase, $P < 0.001$; zydeco (zyd2030), 60.9 ± 4.8, 5.4-fold, $P < 0.001$; slo11 (slo2030), 27.6 ± 2.3, 2.3-fold, $P < 0.001$; seite111 (sei2030), 19.8 ± 2.6, 1.8-fold, $P < 0.05$; ATPase205 (DTS12030), 14 ± 2.2, no change. P-values for Student’s t-test: (*) $P < 0.05$; (**) $P < 0.001$; (***))

(G) Western blot analysis of transgenic Lapsyn expression driven by elav155-GAL4 in head extracts of the indicated genotypes. (Top) Lapsyn expression for elav155-GAL4; UAS-Lapsyn (Lapsyn-GFP)/+ vs. control UAS-Lapsyn (Lapsyn-GFP)+/+ without a driver detected with anti-Lapsyn antiserum. (Bottom) Lapsyn-GFP expression for elav155-GAL4; UAS-Lapsyn-GFP (Lapsyn-GFP)+/+ with a driver detected with anti-Lapsyn or anti-GFP antiserum. Anti-Complexin antiserum was used as a loading control. (C) Representative NMJ from a larva expressing Lapsyn-GFP driven by elav155-GAL4 costained with anti-Lapsyn or anti-GFP antiserum. (D) Representative synaptic boutons from a larva expressing Lapsyn-GFP driven by elav155-GAL4 costained with anti-Fas2. (I) Representative synaptic boutons from a larva expressing Lapsyn-GFP driven by elav155-GAL4 costained for the peractive zone marker anti-nc82.
vesicle docking and release. However, we did not observe colocalization with the active zone marker protein Bruchpilot (anti-nc82) in double immunostaining experiments (Fig. 4H). We next evaluated colocalization with the periactive zone neuronal cell adhesion protein Fasciclin 2 (Fas2). Periactive zones are regions of the presynaptic terminal enriched for proteins regulating the endocytosis of both synaptic vesicles and activated growth-factor signaling complexes. These regions also contain cell adhesion molecules, such as Fas2, that are known to regulate synaptic growth. Lapsyn–GFP-positive puncta partially overlapped with Fas2 (Fig. 4I), but were often found in spots that extended just beyond Fas2 immunoreactivity. In summary, Lapsyn–GFP is present in both axons and synapses, localizing presynaptically in punctate structures contained within or near periactive zones.

Functional analysis of Lapsyn at synapses

To analyze the function of Lapsyn in vivo, we generated mutations in the locus by excision of the P-element P\{SUP\}CG15658\{KG09421\}, which is located 110-bp upstream of the S’ untranslated region (UTR) of the gene. An imprecise excision (Lapsynzg1) was generated that deleted the S’ UTR and the first two coding exons of the gene (Fig. 5A). The boundaries of the Lapsynzg1 deletion were confirmed by PCR analysis (Fig. 5B,C).

Loss of Lapsyn resulted in embryonic lethality at stage 17.
indicating that Lapsyn is essential for embryonic development or function. To examine the structure of the nervous system in these mutants, we fixed 0–22-h embryos and stained them with anti-Fas2 antiserum to label axons. Lapsyn\(^{ze1}\) mutants did not show obvious developmental defects in the formation of the CNS or PNS, with normal CNS commissure formation and PNS axonal pathfinding (Supplemental Fig. 5). To determine whether we could potentially rescue the lethality of Lapsyn\(^{ze1}\) mutants, we overexpressed a UAS-Lapsyn transgene ubiquitously using an actin-GAL4 or tubulin-GAL4 driver. Overexpression of UAS-Lapsyn by actin-GAL4 resulted in a partial rescue of Lapsyn\(^{ze1}\) / Lapsyn\(^{ze1}\) (Fig. 5D) and Lapsyn/GAL4/+ (2R)/EXel6072 (a large deletion that removes Lapsyn, data not shown). Compared with the embryonic lethality of null mutants, 42% of rescued homozygous mutant animals emerged as adults and showed no obvious behavioral abnormalities. Similar results were observed using the tubulin-GAL4 driver (data not shown).

To test whether Lapsyn is required for neuronal and/or synaptic function, we assayed mutant rescue with pre- and postsynaptic GAL4 drivers using the pan-neuronal elav\(^{C155}\)-GAL4 driver and the Mic-GAL4 muscle driver to express UAS-Lapsyn in homozygous Lapsyn\(^{ze1}\) animals (Fig. 5D). Overexpression of UAS-Lapsyn driven by elav\(^{C155}\)-GAL4 resulted in partial rescue of Lapsyn\(^{ze1}\) animals, with 34% surviving to the pupal stage. Animals rescued to the pupal stage by pan-neuronal expression failed to eclose as adults, indicating that Lapsyn likely has additional non-neuronal roles during pupation. Differences in the strength of transgene expression between actin-GAL4 and elav\(^{C155}\)-GAL4 could also contribute to the observed rescue effects. In contrast to ubiquitous or pan-neuronal expression of UAS-Lapsyn, animals rescued with the Mic-GAL4 muscle driver died as embryos. This transgenic rescue analysis indicates that Lapsyn plays essential roles in the nervous system during embryonic and larval development, with additional non-neuronal roles likely during pupation. The failure to achieve complete rescue suggests that specific temporal and spatial regulation of Lapsyn may be required during development that is not recapitulated by GAL4-mediated expression.

Given that complete loss of Lapsyn resulted in embryonic lethality, we examined whether Lapsyn might play a role in regulating synaptic connectivity by analyzing 3rd instar larval NMJs in Lapsyn\(^{ze1}\) heterozygotes. As Lapsyn is transcriptionally up-regulated by increased neuronal activity, we hypothesized that a 50% reduction in gene expression levels might be detrimental to normal neuronal development. As a control, we used precise excision strains obtained from the P-element excision screen, as well as rescued animals in which UAS-Lapsyn was driven by elav\(^{C155}\)-GAL4 in the heterozygote background. Neuronal staining with anti-HRP revealed abnormal synaptic structure in CNS or PNS, with normal CNS commissure formation and PNS axonal pathfinding (Supplemental Fig. 5). To determine whether Lapsyn is required for neuronal and synaptic connectivity by analyzing 3rd instar larval NMJs. We overexpressed UAS-Lapsyn or UAS-Lapsyn-GFP with elav\(^{C155}\)-GAL4 and assayed synaptic connectivity by anti-HRP and anti-Complexin immunostaining. In contrast to the increase in satellite bouton number in animals with reduced Lapsyn expression, presynaptic overexpression of Lapsyn resulted in a statistically significant increase in overall varicosity number, without the formation of satellite buttons (Fig. 7A,B). The results for overall varicosity number were as follows: elav\(^{C155}\)-GAL4; UAS-Lapsyn/+ (106.9 ± 3.8 boutons, n = 12) vs. white (80.4 ± 4.3, n = 10, P < 0.001); UAS-Lapsyn/+ (67 ± 4.7, n = 11, P < 0.001); or elav\(^{C155}\)-GAL4/+ (94.2 ± 4.3, n = 12, P < 0.05). Similar results were observed for overexpression of UAS-Lapsyn-GFP (data not shown). To test whether Lapsyn expression in the postsynaptic compartment could also stimulate synaptic growth, we overexpressed UAS-Lapsyn with the How\(^{24B}\)-GAL4 postsynaptic muscle driver. In contrast to the presynaptic effects of Lapsyn expression, postsynaptic expression of Lapsyn at the larval NMJ resulted in a statistically significant decrease in synaptic varicosity number (How\(^{24B}\)-GAL4; UAS-Lapsyn (44.9 ± 4.2 boutons, n = 12) vs. white (80.4 ± 4.3, n = 10, P < 0.001), UAS-Lapsyn/+ (67 ± 4.7, n = 11, P < 0.001), or How\(^{24B}\)-GAL4/+ (78.1 ± 4.8, n = 12, P < 0.001) controls. These results suggest that Lapsyn expression is functionally coupled to changes in synaptic growth mechanisms at larval NMJs.

Discussion

Drosophila has proven to be a powerful model for identifying gene products involved in learning and memory based on olfactory, visual, and courtship behavioral assays (Waddell and Quinn 2001; Berry et al. 2008). How proteins identified in these studies regulate neuronal function or physiology to specifically alter behavioral plasticity is an ongoing area of investigation. Using the background of the *mut* mutant (Fig. 6C), where Lapsyn mRNA expression is up-regulated.

To test whether Lapsyn mutants might disrupt behavioral plasticity, we assayed associative learning in an established odor-gustatory paradigm for larval associative learning (Neuser et al. 2005). Sugar-reward training in larvae can produce olfactory memories that require cAMP signaling (Honjo and Furukubo-Tokunaga 2005) and embryonic-born intrinsic Kenyon cells of the larval mushroom body (Pauls et al. 2010). We compared learning in behavioral assays where groups of 25–30 larvae were required to differentially associate two conditioned odors (isomyl acetate vs. 1-octanol) with fructose as the reward stimuli. We first tested whether Lapsyn\(^{ze1}\)/+ heterozygotes showed normal olfactory and gustatory behaviors. No differences were found in taste and smell preference tests between controls and Lapsyn\(^{ze1}\)/+ heterozygotes, as both groups showed significant attraction to the odors used and a preference for fructose over agar alone (Supplemental Fig. 7A–C). In contrast, associate learning in reciprocally trained groups was absent in Lapsyn\(^{ze1}\)/+ heterozygotes (learning index [LI] = 0.02 ± 0.06, n = 8, P < 0.01) compared with white (LI = 0.45 ± 0.03, n = 8) or precise excision (Lapsyn\(^{ze1}\)/+; LI = 0.46 ± 0.06, n = 9) controls (Fig. 6D). However, expression of a UAS-Lapsyn transgene driven by elav\(^{C155}\)-GAL4 was unable to rescue the learning defect in Lapsyn\(^{ze1}\)/+ heterozygote larvae (LI = 0.05 ± 0.01, n = 7) (Fig. 6D). The lack of rescue may reflect additional defects unrelated to reduced Lapsyn function in the mutants, or the requirement for spatial, temporal or activity-regulated transcription of Lapsyn that is not reproduced by the elav\(^{C155}\)-GAL4 driver.

As Lapsyn was up-regulated by neuronal activity, we also tested whether increased expression of UAS-Lapsyn could alter synaptic development at larval NMJs. We overexpressed UAS-Lapsyn or UAS-Lapsyn-GFP with elav\(^{C155}\)-GAL4 and assayed synaptic connectivity by anti-HRP and anti-Complexin immunostaining. In contrast to the increase in satellite bouton number in animals with reduced Lapsyn expression, presynaptic overexpression of Lapsyn resulted in a statistically significant increase in overall varicosity number, without the formation of satellite buttons (Fig. 7A,B). The results for overall varicosity number were as follows: elav\(^{C155}\)-GAL4; UAS-Lapsyn/+ (106.9 ± 3.8 boutons, n = 12) vs. white (80.4 ± 4.3, n = 10, P < 0.001); UAS-Lapsyn/+ (67 ± 4.7, n = 11, P < 0.001); or elav\(^{C155}\)-GAL4/+ (94.2 ± 4.3, n = 12, P < 0.05). Similar results were observed for overexpression of UAS-Lapsyn-GFP (data not shown). To test whether Lapsyn expression in the postsynaptic compartment could also stimulate synaptic growth, we overexpressed UAS-Lapsyn with the How\(^{24B}\)-GAL4 postsynaptic muscle driver. In contrast to the presynaptic effects of Lapsyn expression, postsynaptic expression of Lapsyn at the larval NMJ resulted in a statistically significant decrease in synaptic varicosity number (How\(^{24B}\)-GAL4; UAS-Lapsyn (44.9 ± 4.2 boutons, n = 12) vs. white (80.4 ± 4.3, n = 10, P < 0.001), UAS-Lapsyn/+ (67 ± 4.7, n = 11, P < 0.001), or How\(^{24B}\)-GAL4/+ (78.1 ± 4.8, n = 12, P < 0.001) controls. These results suggest that Lapsyn expression is functionally coupled to changes in synaptic growth mechanisms at larval NMJs.

www.learnmem.org 200 Learning & Memory
Figure 6. Lapsyn regulates synaptic growth and larval learning. (A) Representative NMJs for muscle 4 in segment A5 of 3rd instar larvae of the indicated genotypes immunostained with anti-HRP. (B) Quantification of satellite bouton number for the indicated genotypes at muscle fiber 4 in segment A5. Green bars represent controls, including white (3.4 \pm 1.3 satellite boutons, n = 8), Lapsyn+/+ (1.4 \pm 0.6, n = 8) and UAS-Lapsyn+/+ (2.3 \pm 0.8, n = 8). Black bars represent heterozygous mutant Lapsyn-/- animals in different genetic backgrounds, including elav1-15-GAL4; Lapsyn-/-/+ (8.5 \pm 1.8, n = 7), Lapsyn-/-/+; UAS-Lapsyn+ (9.9 \pm 1.5, n = 7) and Lapsyn-/-/+ (10.4 \pm 2.3, n = 8). Blue bars represent rescued animals expressing one or two alleles of transgenic UAS-Lapsyn+ driven by elav1-15-GAL4, including elav1-15-GAL4; Lapsyn-/-/+; UAS-Lapsyn+ (5.6 \pm 1.2, n = 7), and elav1-15-GAL4; Lapsyn-/-/+; UAS-Lapsyn/UAS-Lapsyn (3.2 \pm 1.6, n = 7). P-value of Student’s t-test (* P < 0.05, (**) P < 0.001). Error bars represent SEM. (C) Satellite bouton overgrowth was partially reduced in heterozygous Lapsyn-/-/+ animals in the rut1 genetic background. Satellite bouton number was quantified on muscle 4 in segment A5 of 3rd instar larvae in rut1; Lapsyn-/-/+ (5.4 \pm 0.13, n = 16); rut1; PE+ (3.5 \pm 0.78, n = 15); Lapsyn-/-/+ (8.5 \pm 0.02, n = 16); and PE+ (4.7 \pm 0.84, n = 15). (D) Heterozygous Lapsyn-/-/+ larvae (LI = -0.02 \pm 0.06, n = 8) fail to associate odor with fructose reward compared with white (LI = 0.45 \pm 0.03, n = 8, P < 0.001) and white; PE+ (LI = 0.46 \pm 0.06, n = 9, P < 0.01) controls. This defect was not significantly rescued by overexpression of UAS-Lapsyn driven using elav1-15-GAL4 (LI = 0.05 \pm 0.01, n = 7). Error bars represent SEM. P-values for Student’s t-test (* P < 0.05, (**) P < 0.01, (***)) P < 0.001).

The well-characterized 3rd instar larval NMJ as a model glutamatergic synapse, we compared the effects on synaptic connectivity of several learning mutants that alter cAMP signaling (dnc1, rut1, amn1) with the poorly characterized ARM mutant rsh1. Each mutant altered synaptic connectivity at NMJs in a specific manner, suggesting that changes in neuronal connectivity in the CNS might contribute to the behavioral defects found in these strains. Our observations in dnc1 and rut1 are similar to previous studies of synaptic morphology in these mutants (Zhong and Wu 1991; Renger et al. 2000). We also assayed gene expression in the mutants using microarray analysis, which revealed many neuronal transcripts that were transcriptionally altered. A longer-term goal is to link transcriptional changes in specific loci to the behavioral and morphological defects found in learning and memory mutants.

Experimental approaches to define the biochemical transition from short-term plasticity to long-term memory storage have suggested a key role for cAMP signaling. At the molecular level, one of the best-characterized pathways for STM has been described for gill withdrawal reflex facilitation in Aplysia. In this system, conditioned stimuli act through a serotonergic G protein-coupled receptor pathway to activate adenyl cyclase in the presynaptic sensory neuron, resulting in the synthesis of cAMP (Cedar and Schwartz 1972; Brunelli et al. 1976). cAMP activates PKA, which phosphorylates a presynaptic potassium channel (Klein et al. 1982), leading to prolonged calcium influx and enhanced neurotransmitter release from the sensory neuron (Klein and Kandel 1980). Insights into the LITM pathway in Aplysia have implicated CREB function. Robust training or stimulation with serotonin induces translocation of the catalytic subunit of PKA into the nucleus, where it activates the transcription factor CREB-1 and inhibits the transcriptional suppressor CREB-2 (Bartsch et al. 1995). CREB-1 acts on additional transcription factors to produce specific mRNAs that are transported to dendrites and captured by activated synapses. Local synthesis of new proteins and subsequent growth of synaptic connections is predicted to underlie long-term memory in the system (Dash et al. 1990; Bailey et al. 1992; Kaang et al. 1993; Casadio et al. 1999). It is likely that similar molecular pathways exist in other species. Transgenic Drosophila with inducible inhibition of PKA show memory impairment (Drain et al. 1991). PKA is also activated during hippocampal LTP induction in mammals (Roberson and Sweatt 1996), and transgenic mice that express an inhibitor of PKA have defective LTP and hippocampal-dependent memory (Huang et al. 1995; Abel et al. 1997), suggesting a general role for cAMP/PKA in the transition from learning to memory storage.
effects on transcription or RNA processing that would modify long-term synaptic function. Given that ARM can last for days, a change in nuclear function is an attractive biological underpinning, even though ARM has been suggested to be a translation-independent form of memory (Tully et al. 1994). Given that general protein synthesis was reduced by only 50% in the previous studies, it is quite possible that ARM and LLTM have different thresholds for translational inhibition.

In terms of synaptic modifications in rsh1 mutants, we found that larval NMJ synapses were altered compared with controls. Specifically, rsh1 mutants had shorter axonal projections onto target muscles and displayed more synaptic boutons within the innervated region. These alterations gave rise to a more compact innervation pattern than observed in controls. Overgrowth of synapses at larval NMJs was also observed in dnc1 mutants, whereas reduced innervation length was found in rut1 mutants. As such, rsh1 mutant NMJs display a unique phenotype compared with mutants that increase or decrease cAMP levels. The molecular mechanisms by which Radish directly interacts with growth regulators at the synapse in a PKA-dependent fashion. Indeed, an interaction between Radish and Rac1 was found in a high-throughput yeast two-hybrid screen for interacting Drosophila proteins (Formstecher et al. 2005). Rac1 is a Rho family GTPase that regulates neuronal and synaptic morphology via reorganization of the cytoskeleton (Gao et al. 1999; Colley 2000). Rac1 function has also been linked to PAK1 and the Fragile-X Mental Retardation protein (FMRP), which alter synaptic and behavioral plasticity in mammals (Schenck et al. 2010; Shuai et al. 2003; Hayashi et al. 2007). Recently, Rac activity has been linked to memory decay in Drosophila (Shuai et al. 2010), indicating that a Radish–Rac link might control memory processing via alterations in cytoskeletal modulation of synaptic function or stability. Although it is possible that Radish regulates synaptic properties through a Rac1 interaction, we were unable to observe a robust Rac1–Radish interaction in either yeast-two hybrid or GST pull-down experiments (data not shown). We also did not observe Radish–GFP enrichment at larval synapses where we quantified the synaptic growth defect, although the protein was present in larval axons. As such, it may be that NMJ defects in rsh1 arise through downstream effects secondary to the loss of Radish function in a neuronal compartment besides the synapse.

To further explore this possibility and examine links between rsh and the STM pathway, we performed genome-wide microarray studies on several learning and memory mutants. Although there were some shared transcriptional changes between rsh1 and the other mutants (dnc1, rut1, amn1), most of the changes in rsh1 were unique. Although linking these changes to a direct effect on the underlying biology will require more work, several interesting loci were identified that could contribute to synaptic plasticity defects. The Drosophila NFAT homolog, a transcription factor that binds to the activity-regulated AP-1 (Fos/jun) dimer, was robustly up-regulated by sevenfold in rsh1 mutants. The RNA-binding protein smooth (sm) was also up-regulated in rsh1 mutants. Mutations in sm have been shown to alter axonal pathfinding.
Lapsyn mRNA expression was broadly up-regulated in the brain by neuronal activity, suggesting a potential widespread effect on neuronal function. Lapsyn–GFP transgenic protein targeted to the presynaptic terminal, partially overlapping with the perisynaptic zone, a region of the nerve terminal enriched in proteins that regulate synaptic vesicle endocytosis and synaptic connectivity. Animals lacking Lapsyn died at the end of embryogenesis, although the early stages of nervous system formation appeared normal. We were able to partially rescue Lapsyn mutants with neuronal expression of a Lapsyn transgene, indicating an essential function for the protein in the nervous system. Rescue to adulthood required expression outside the nervous system, suggesting Lapsyn is likely to have functions in other tissue types as well. Manipulations of Lapsyn expression in the nervous system resulted in distinct defects in synaptic connectivity at the NMJ. Heterozygotes expressing only a single copy of the Lapsyn gene displayed supernumerary satellite bouton formation, a phenotype commonly associated with mutants that disrupt synaptic endocytosis (Dickman et al. 2006) or that alter the transmission or trafficking of synaptic growth factors through the endosomal pathway (Dickman et al. 2006) or that alter the transmission or trafficking of synaptic growth factors through the endosomal pathway (Dickman et al. 2006). In Drosophila, LRR repeat proteins have been implicated in motor neuron target selection (Shinza-Kameda et al. 2006; Kurusu et al. 2008). Given the roles of other LRR-containing proteins in the regulation of neuronal connectivity, we explored whether Lapsyn might also function in this pathway. Lapsyn was up-regulated by neuronal activity in addition to being up-regulated in rshΔ, making it an interesting transcriptional target to assay for a role in synaptic modification.

Lapsyn mRNAs were up-regulated in the brain by neuronal activity, suggesting a potential widespread effect on neuronal function. Lapsyn–GFP transgenic protein targeted to the presynaptic terminal, partially overlapping with the perisynaptic zone, a region of the nerve terminal enriched in proteins that regulate synaptic vesicle endocytosis and synaptic connectivity. Animals lacking Lapsyn died at the end of embryogenesis, although the early stages of nervous system formation appeared normal. We were able to partially rescue Lapsyn mutants with neuronal expression of a Lapsyn transgene, indicating an essential function for the protein in the nervous system. Rescue to adulthood required expression outside the nervous system, suggesting Lapsyn is likely to have functions in other tissue types as well. Manipulations of Lapsyn expression in the nervous system resulted in distinct defects in synaptic connectivity at the NMJ. Heterozygotes expressing only a single copy of the Lapsyn gene displayed supernumerary satellite bouton formation, a phenotype commonly associated with mutants that disrupt synaptic endocytosis (Dickman et al. 2006) or that alter the transmission or trafficking of synaptic growth factors through the endosomal system (O’Connor-Giles et al. 2008; Rodal et al. 2008). This increase in satellite boutons in Lapsyn heterozygotes suggests that the protein plays a role in the regulation of synaptic growth signaling. Overexpression of Lapsyn, as induced by activity or observed in rshΔ mutants, also elicited a change in synaptic growth, resulting in an increase in overall bouton number at larval NMJs. Thus, regulation of Lapsyn levels modulates synaptic growth mechanisms at NMJs. Lapsyn mutant heterozygotes also display defects in larval associative learning, although we were unable to rescue this phenotype with pan-neuronal overexpression. The lack of a specific rescue makes it unclear whether the learning defects are linked to a non-Lapsyn function, or if a more specific spatial and temporal expression of Lapsyn is required for functional rescue.

How Lapsyn participates in synaptic signaling is currently unclear. The closest mammalian homologs of Lapsyn are the NGL family of synaptic adhesion molecules (Woo et al. 2009). Three isoforms are found in mammals, NGL-1, NGL-2, and NGL-3, which interact with netrin-G1, netrin-G2, and the receptor tyrosine phosphatase LAR, respectively. NGL-1 promotes axonal outgrowth (Lin et al. 2003), whereas NGL-2 is capable of triggering synapse formation (Biederer 2006; Kim et al. 2006). The interaction of NGL-3 with LAR is intriguing, as the Drosophila LAR homolog has been shown to bind the heparan sulfate proteoglycans Syndecan and Dallylike to regulate synaptic growth at the NMJ (Johnson et al. 2006). The homology between Lapsyn and the mammalian NGL family is restricted to the extracellular LRR domain, with no homology observed in the intracellular C terminus. The three mammalian NGLs also lack homology to each other at the C terminus, except for the presence of a PDZ-binding domain at the end of the intracellular domain. It will be important to identify binding partners for Lapsyn at the synapse to define how it may regulate synaptic adhesion or signaling between the pre- and postsynaptic compartments to regulate synaptic growth. Likewise, additional studies into the Radish-dependent ARM phase of memory may reveal how rshΔ-dependent changes in Lapsyn levels contribute to the synaptic and behavioral defects of this memory mutant.

Materials and Methods

Drosophila genetics

Drosophila were cultured on standard medium at 22°C. The rshΔ, dnc1Δ, amnΔ, and rshΔ mutants were outcrossed into the CS genetic background, with CS serving as a control for experimental manipulations.

Western and immunocytochemical analysis

Anti-Lapsyn antisera was generated in rabbits immunized with a recombinant protein encompassing the extracellular domain of Lapsyn (from serine 58 to phenylalanine 275) fused to GST (Invitrogen). Anti-Lapsyn was used at a 1:300 dilution and detected using goat anti-rabbit antisera conjugated to Alexa Fluor 680 (Invitrogen, #A21076). Anti-GFP antibodies (Invitrogen, #A11120) were used at 1:5000 and detected using goat anti-mouse anti-sera conjugated to IRDye800 (Rockland, #610-132-121). Anti-Complexin (Huntwork and Littleton 2007) antisera was used at 1:1000 and detected using goat anti-rabbit antisera conjugated to Alexa Fluor 680 (Invitrogen, #A21076). Cell nuclei were detected with SYTO Orange (Molecular Probes) at 1:1000. Western blot analysis was done using a LICOR Odyssey infrared scanner (LICOR).

Morphological analysis

Immunostaining was performed on wandering 3rd instar larvae or 0–22 h staged embryos at room temperature as indicated. 3rd instar larvae were dissected in Drosophila H3.1 physiological saline and fixed in 4% formaldehyde for 45 min before staining with anti-synt1 (Littleton et al. 1993) antisera at 1:1000, anti-Complexin antisera at 1:500, or goat anti-HRP antisera conjugated to DyLight 549 (Jackson ImmunoResearch). Immunoreactive proteins were visualized on a Zeiss Pascal confocal microscope. Rhodamine-phalloidin (Invitrogen) was used at 1:250 to stain muscles for surface area measurements. DAPI immunostaining was conducted using Vectashield mounting medium (Vector Laboratories) Confocal images were quantified for varicosity number, synapse branch number (branches with at least five boutons per branch), innervation length along the muscle (measured as the distance between the most distal boutons on muscles 6 and 7), muscle length, and muscle width. All error measurements are SEM. Anti-Fas2 antisera (Developmental Studies Hybridoma Bank) was used at 1:1000 and anti-bruchpilot (nc2X, Developmental Studies Hybridoma Bank) antisera was used at 1:50. For embryonic immunostaining, embryos were dechorionated with 50% bleach and fixed in 4% formaldehyde for 20 min. Embryos were then devitellinized and stained with anti-Fas2 antisera at 1:200.

Kinase assay

The Radish kinase assay was performed in triplicate using the catalytic subunit of PKA (New England Biolabs) according to the manufacturer’s instructions, with the addition of [γ-32P]ATP (Perkin Elmer). Approximately 10 μg of purified GST-fusion protein was used per reaction and incubated with 250 units of recombinant PKA. Reaction products were separated by SDS-PAGE, and the gels were stained with Bio-Safe Coomassie blue.
(Bio-Rad), dried, and exposed to autoradiography film for 30 min at room temperature.

Microarray analysis
Microarray analysis was performed using Affymetrix Drosophila GeneChips with biotinylated cRNA by the methods described in the Affymetrix GeneChip expression manual as previously described (Guan et al. 2005). RNA was isolated from the heads of adult male flies aged 3–4 d post-eclosion, at room temperature. All flies were sacrificed between 2 and 4 PM to reduce any circadian transcriptional changes. For a single chip, 600 heads were sufficient to obtain 150 mg of total RNA, 3 mg of mRNA, and 45 mg of cRNA/1 mg mRNA. Total RNA was isolated using Trizol (GIBCO BRL). Biotin-labeled cRNA was generated with an RNA Transcript Labeling Kit (Enzo) using the supplied protocol with the modification of running half reaction mix. The Affymetrix array high-density oligonucleotide arrays were probed, hybridized, stained, and washed in MIT's Biopolymers Facility according to the manufacturer's instructions. Microarray analysis was performed using Affymetrix's Microarray Suite MAS 5.0 statistics-based analysis software, Student's t-test, and Mann-Whitney U-test using the following normalization values: Scaling target: 1500, Alpha1: 0.04, Alpha2: 0.06, Taur: 0.015, Gamma1L: 0.0025, Gamma1H: 0.0025, Gamma2L: 0.0030, Gamma2H: 0.0030 and Perturbation: 1.1. Gene changes were called based upon the stringency criterion that differential regulation must be reported by the Affymetrix software for at least 75% of the pairwise comparisons. A summary of the expression levels of each gene is provided based on Affymetrix detection algorithms (Supplemental Table 1), allowing additional analysis with other microarray tools.

Quantitative real-time RT–PCR and semi-quantitative RT–PCR
Quantitative real-time RT–PCR and semi-quantitative RT–PCR were performed as previously described (Guan et al. 2005). Primers were made to sequences used in the design of probe pairs by Affymetrix and each gene ORF. cDNA was diluted into equivalent amounts from 1 mg of total RNA per 1 mL. cDNAs were analyzed by quantitative real-time PCR using a SYBR Green PCR amplification kit (Applied Biosystems) and measured in a Bio-Rad iCycler (Bio-Rad, Richmond, CA). Target gene message levels were normalized to glyceraldehyde-3-phosphate dehydrogenase levels and then to the control sample. All PCRs were performed in triplicate. The primers used for semi-quantitative RT–PCR were as follows:

For GAPDH1 (forward: 5′-taacagctgaacctggaggg-3′/reverse: 5′-taacagctgaacctggaggg-3′), Syt7 (forward: 5′-gagagccagacttttagg-3′/reverse: 5′-tacctggtttgtcttacg-3′), Nnda1 (forward: 5′-aattggctgagctaaacg-3′/reverse: 5′-gcttctatagcttggac-3′), Act88F (forward: 5′-gacagctgatgacacaaacg-3′/reverse: 5′-gtaaaaccctctgtaccc-3′), CG7607 (forward: 5′-ccacaaatctctctgcacaaacg-3′/reverse: 5′-tcatcttctctgtaaggg-3′), Rgl (forward: 5′-actctctgactgcttgaaagt-3′/reverse: 5′-gacctgcgccaaatgc-3′), aay (forward: 5′-atgagccgatgcttga-3′/reverse: 5′-tacaaatcggggccttaac-3′), mthl8 (forward: 5′-cacttcataatccttttttgc-3′/reverse: 5′-ccatctcataatccttttttgc-3′), SHT–7 (forward: 5′-cctcagattttgttctgagtc-3′/reverse: 5′-cggctgctgctgctgctgctg-3′), Lapsyn (forward: 5′-tcctcaggtgatcttgtag-3′/reverse: 5′-tcctgccagttctttagcag-3′), glec (forward: 5′-ccgctacatgccattttttttt-3′/reverse: 5′-cctgctagctgcttcaac-3′).

In situ hybridization to brain sections
Dig-11-UTP-labeled antisense and sense RNA probes were prepared using T7 polymerase (Ambion). Adult Drosophila were placed into fly collars after CO2 anesthesia and embedded in frozen OCT on dry ice, and 16-μm tissue sections were collected on a cryostat (Leica) and dried for 30 min to 3 h at room temperature. The sections were processed as described previously (Nighorn et al. 1991), except for the in situ hybridization temperature (63°C). The primers used to make in situ hybridization probes by PCR, which also included the T7 RNA polymerase promoter at each end (data not shown) were as follows:

mthl8 (forward: 5′-gcagctgctgctgctgctgctg-3′/reverse: 5′-gcagttctgcattctttgcagag-3′), Lapsyn (forward: 5′-tcctcaggtgatcttgtag-3′/reverse: 5′-gcagtcgctcagagagcag-3′).

Appetitive olfactory learning assays in Drosophila larvae
3rd instar feeding stage larvae aged 4–5 d after egg laying were used in learning assays. Animals were kept in a 25°C incubator with a 12:12 h light-dark cycle, and experiments were performed under regular light in a fume hood at 25°C. Learning assays were performed en masse using published protocols (Neuser et al. 2008) with a few modifications. Groups of 25–40 larvae were assayed after either of two reciprocal training regimes: (1) larvae were exposed to isomyl acetate (IAA) (MP Biomedical, cat. no. 155077, diluted 1:50 in paraffin oil) with a positive reinforcer of 2M D-fructose (FRU) (Alfa Aesar, A17718); or 1-octanol (OCT) (MP Biomedical, cat no. 155969) without reinforcer (IAA+/OCT−). (2) Alternatively, larvae were trained reciprocally (IAA−/OCT+). Associative learning index (LI) was calculated as: LI = (PREind IAAd−/OCT+−PREind IAAd+/OCT−)/2; PREind = (number of observations IAAnumber of observations OCTX TOTAL) of observations. In control assays, we tested the ability of larvae to detect IAA, OCT, and FRU. Briefly, naive animals were given the choice between either paraffin-diluted IAA vs. paraffin (PRE IAA), or between undiluted OCT vs. an empty container (PRE OCT). To assay FRU detection, naive animals were given the choice between one side of an agarose plate containing pure 1% agarose on one half vs. 2M FRU in 1% agarose (PRE FRU) on the other half. For all tests, animals were assayed in groups of 20–40 larvae, with the calculation of PRE values as: number of observations FP/number of observations TOTAL.

Acknowledgments
We thank Elisabeth Folkers for helpful discussions, Lei Xu and Xiaohu Zhao for technical support, MIT's Biopolymer and BioMicroCenter for assistance with microarray chip hybridizations and data analysis, and the Bloomington and Vienna Stock Centers for Drosophila stocks. This work was supported by grant no. NS43244 from the NIH to J.T.L.

References

Received September 24, 2010; accepted in revised form February 10, 2011.