A Drosophila model of Huntington disease-like 2 exhibits nuclear toxicity and distinct pathogenic mechanisms from Huntington disease

Megan Krench¹, Richard W. Cho¹,² and J. Troy Littleton¹,²,*

¹The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences and
²Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*To whom correspondence should be addressed at: Department of Biology, MIT, 43 Vassar St, 46-3243, Cambridge, MA 02139, USA. Tel: +1 617 452 2605; Fax: +1 617 452 2249; Email: troy@mit.edu

Abstract

Huntington disease-like 2 (HDL2) and Huntington disease (HD) are adult-onset neurodegenerative diseases characterized by movement disorders, psychiatric disturbances and cognitive decline. Brain tissue from HD and HDL2 patients shows degeneration of the striatum and ubiquitinated inclusions immunoreactive for polyglutamine (polyQ) antibodies. Despite these similarities, the diseases result from different genetic mutations. HD is caused by a CAG repeat expansion in the huntingtin (HTT) gene, while HDL2 results from an expansion at the junctophilin 3 (JPH3) locus. Recent evidence indicates that the HDL2 expansion may give rise to a toxic polyQ protein translated from an antisense mRNA derived from the JPH3 locus. To investigate this hypothesis, we generated and characterized a Drosophila HDL2 model and compared it with a previously established HD model. We find that neuronal expression of HDL2-Q15 is not toxic, while the expression of an expanded HDL2-Q138 protein is lethal. HDL2-Q138 forms large nuclear aggregates, with only smaller puncta observed in the cytoplasm. This is in contrast to what is observed in a Drosophila model of HD, where polyQ aggregates localize exclusively to the cytoplasm. Altering localization of HDL2 with the addition of a nuclear localization or nuclear export sequence demonstrates that nuclear accumulation is required for toxicity in the Drosophila HDL2 model. Directing HDL2-Q138 to the nucleus exacerbates toxicity in multiple tissue types, while confining HDL2-Q138 to the cytoplasm restores viability to control levels. We conclude that while HD and HDL2 have similar clinical profiles, distinct pathogenic mechanisms are likely to drive toxicity in Drosophila models of these disorders.

Introduction

Huntington disease-like 2 (HDL2) is an autosomal dominant neurodegenerative disorder with symptoms and neuropathology strikingly similar to Huntington disease (HD) (1). Symptoms include chorea, psychiatric disturbances and cognitive decline with death resulting approximately 15 years after onset (2). Patients’ brains show extensive degeneration of the caudate nucleus and cortical thinning (2). Ubiquitinated intranuclear inclusions that stain with 1C2, an antibody that detects polyglutamine (polyQ) proteins, are a hallmark of the disorder (2). In spite of symptomatic and neuropathological similarities to HD, HDL2 patients do not have a mutation in the huntingtin (HTT) gene. The HDL2 mutation results from a CTG/CAG trinucleotide repeat expansion at the junctophilin 3 (JPH3) locus on chromosome 16 (3). As with HD, the number of tandem repeats varies among healthy individuals; in both HD and HDL2, the disease state results from expansions greater than approximately 40 repeats. Depending on the frame, the mutation in HDL2 could result in a polyglutamine expansion, a polyalanine expansion or an expansion in the 3’ UTR...
(3). However, expanded polyalanine or polyleucine proteins have not been detected in HDL2 patient brain samples (4).

Several mechanisms of toxicity have been proposed to contribute to HDL2 pathogenesis. First, the expansion may impair transcription of JPH3, leading to a loss of function (4). Another potential pathogenic pathway is RNA toxicity from expanded CUG transcripts. Expanded CUG transcripts have been shown to cause toxicity in several diseases, including Machado–Joseph disease (MJD), spinocerebellar ataxia 8 (SCA8) and myotonic dystrophy type 2 (5–7). CUG RNA foci have been found in postmortem HDL2 patient brain tissue, and staining indicates that the RNA-spooling protein muscleblind is sequestered in these foci (8). While CUG RNA toxicity may contribute to HDL2 pathogenesis, it does not explain the existence of ubiquitinated aggregates in patients’ brains. Protein aggregates and RNA foci rarely, if ever, co-localize (2), suggesting that protein aggregates may be the result of a separate pathogenic pathway.

Recently, toxicity in microsatellite expansion diseases has been suggested to occur from transcripts originating in both sense and antisense directions. Pathology resulting from bidirectional transcription has been described in several CTG expansion syndromes, including Machado–Joseph disease (MJD), spinocerebellar ataxia 8 (SCA8) and myotonic dystrophy type 1 (9–11). CUG RNA foci have been found in postmortem HDL2 patient brain tissue, and staining indicates that the RNA-splicing protein muscleblind is sequestered in these foci (8). While CUG RNA toxicity may contribute to HDL2 pathogenesis, it does not explain the existence of ubiquitinated aggregates in patients’ brains. Protein aggregates and RNA foci rarely, if ever, co-localize (2), suggesting that protein aggregates may be the result of a separate pathogenic pathway.

Neuronal expression of HDL2-Q138 causes dose-dependent lethality

To investigate the effects of HDL2 expression in Drosophila, UAS-HDL2 flies were crossed to elav-GALA4 flies to generate progeny that expressed HDL2 transgenes strongly throughout the nervous system. Pan-neuronal expression of HDL2-Q15 is not toxic in any of the lines we generated. There was no difference among animals expressing untagged, GFP-tagged and mRFP-tagged constructs. Conversely, pan-neuronal expression of HDL2-Q138 was highly toxic. Due to random genomic integration of the construct, UAS-HDL2 lines have varying expression levels as observed by fluorescent intensity of the expressed tagged HDL2 proteins. In strong expressing lines, elav > HDL2-Q138 resulted in early pupal lethality, with animals dying shortly after the third instar larval
stage. There was no difference in toxicity between flies expressing untagged HDL2-Q138 versus constructs with mRFP or GFP tags. An mRFP-tagged, high-expression line was selected for use in the rest of the experiments. As observed for HDL2-Q138, pan-neuronal expression of mRFP-HTT-Q138 or Q127-HA is also lethal before adulthood.

HDL2-Q15 is soluble, while HDL2-Q138 aggregates localized to different compartments across specific cell types

To determine the subcellular compartment potentially responsible for HDL2 toxicity, we analyzed the localization of mRFP-HDL2-Q15 and mRFP-HDL2-Q138 in three cell types: multidendritic peripheral neurons (pickpocket-GAL4), muscle cells (mef2-GAL4) and epithelial cells of the salivary gland (elav-GAL4, a neuronal driver that also expresses in salivary glands). In all cell types tested, mRFP-HDL2-Q15 remained diffuse throughout the nucleus and cytoplasm, occasionally forming small puncta (Fig. 2A, E and I). In contrast, mRFP-HDL2-Q138 aggregated in all cell types tested, with inclusions forming in distinct compartments across different tissues (Fig. 2B, F and J). In multidendritic peripheral neurons, mRFP-HDL2-Q138 aggregates in the nucleus (Fig. 2B). mRFP-HDL2-Q138 localization in muscles is similar to that observed in neurons: nuclear aggregates are always observed, and the protein appears as smaller puncta in the cytoplasm (Fig. 2F). In contrast to nuclear aggregates formed in neurons and muscles, strong expression of mRFP-HDL2-Q138 in salivary gland epithelial cells leads to cytoplasmic aggregates (Fig. 2J). Hence, aggregates are consistently observed in all tissues examined, but the distribution of mRFP-HDL2-Q138 varies in different cell types.

We next compared the localization of mRFP-HDL2-Q138 with that of mRFP-HTT-Q138. While mRFP-HDL2-Q138 forms nuclear aggregates in neurons and muscles, mRFP-HTT-Q138 is strictly cytoplasmic in these tissues in the Drosophila HD model. mRFP-HTT-Q138 is not observed in the nucleus of neurons, muscles or epithelial cells (Fig. 2C, G and K). In HD patients and mammalian models, N-terminal fragments produced by caspase and calpain cleavage events have been found to cause nuclear aggregates (15–18). Drosophila do not cleave HTT to liberate smaller N-terminal pieces from the 588-amino acid fragment expressed in our model, which may explain why the protein remains confined to the cytoplasm (13).

We next compared mRFP-HDL2-Q138 localization with that of Q127-HA, a pure polyQ tract with no surrounding protein. As with mRFP-HDL2-Q138, neuronal expression of Q127-HA leads to nuclear aggregates in neurons (Fig. 2D). Similarly, Q127-HA aggregates in the nuclei of muscle cells (Fig. 2H). Q127-HA puncta are rarely observed in the muscle cytoplasm. A pronounced distinction between mRFP-HDL2-Q138 and Q127-HA localization was observed in salivary gland epithelial cells. While mRFP-HDL2-Q138 aggregates in the cytoplasm of this cell type, Q127-HA forms nuclear aggregates (Fig. 2J and L). These experiments indicate that HDL2 aggregation is polyQ-length dependent in both neuronal and non-neuronal cell types. Furthermore, mRFP-HDL2-Q138 localization is distinct from that of pathogenic mRFP-HTT-Q138 or a pure polyQ tract. Table 1 summarizes the localization of mRFP-HDL2-Q138, mRFP-HTT-Q138 and Q127-HA in the cell types analyzed.
HDL2-Q138 expression does not induce axonal trafficking or synaptic defects

We next investigated and compared mRFp-HDL2-Q138 and mRFp-HTT-Q138 expression in glutamatergic motor neurons and neuromuscular junction (NMJ) synapses using elav-GAL4. As previously observed, mRFp-HTT-Q138 forms large immobile aggregates along axons (Fig. 3E) that interfere with axonal transport and result in the accumulation of transport cargo at these sites of blockage (13). As observed in peripheral neurons, mRFp-HDL2-Q138 expression results in aggregates in the nucleus of ventral nerve cord motor neurons (Fig. 3A). mRFp-HDL2-Q138 often forms a single nuclear inclusion, but lower levels of soluble mRFp-HDL2-Q138 are also observed in nuclei. The HDL2-Q138 protein is also trafficked along axons as small aggregates or puncta (Fig. 3D), but does not lead to large axonal aggregates or a blockage in axonal transport as observed with pathogenic HTT. In contrast to HDL2 and HTT pathogenic proteins, we did not observe Q127-HA in axons, but instead found it in nuclear aggregates (Fig. 3C and F). We conclude that HDL2 does not manifest large axonal aggregates that disrupt transport as observed in our Drosophila HD model (13).

We next examined NMJ synaptic terminals where motor neurons contact muscle fibers. After contacting the muscle fiber, immature filopodia at the NMJ develop synaptic varicosities, termed boutons, which serve as a site for communication between nerve and muscle (19). The relationship between the neuron and the muscle is plastic and changes in response to neural activity and muscle growth. Failure to coordinate activity-dependent synaptic growth can lead to under- or over-developed NMJs. Both soluble and aggregated mRFp-HTT-Q138 readily localize to the synapse, and expression of mRFp-HTT-Q138 induces synaptic overgrowth with supernumerary satellite boutons due to a disruption in the trafficking of synaptic growth factor receptors (Fig. 3H, Akerbergova and Littleton, unpublished data). Small mRFp-HDL2-Q138 puncta are occasionally found at synaptic boutons, but the toxic protein does not form...
large aggregates like those observed in nuclei, and does not induce synaptic overgrowth (Fig. 3G, arrowheads). As such, the peripheral pathologies associated with pathogenic HTT on axonal transport and synaptic development are absent in the HDL2 model. To look for more subtle defects in synaptic properties, we performed electrophysiology at the NMJ to determine if HDL2-Q138 perturbed synaptic transmission. Neuronal expression of mRFP-HDL2-Q138 did not significantly impair spontaneous or evoked release (Supplementary Material, Fig. S2), suggesting synaptic transmission is not disrupted at this stage of development by pathogenic HDL2. In contrast to HDL2 and HTT, the polyQ protein Q127-HA alone is not observed in axons or at the NMJ (Fig. 3F and I). Expression of Q127-HA also does not induce synaptic overgrowth (Fig. 3I), suggesting that this effect is specific for the pathogenic HTT protein, which displays prominent synaptic aggregates.

mRFP-HDL2-Q138 does not localize to the nucleolus or impair nuclear import

Given the lack of axonal transport or synaptic transmission defects in HDL2 expressing animals, we examined other cellular compartments where toxicity could arise. Unlike mRFP-HTT-Q138, which remains in the cytoplasm, mRFP-HDL2-Q138 aggregates in neuronal nuclei. Within the nucleus, mRFP-HDL2-Q138 usually forms a single, dense aggregate. We hypothesized that mRFP-HDL2-Q138 may be aggregating within the nucleolus, which would suggest certain pathologies. The nucleolus is a non-membrane-bound subdomain within the nucleus where ribosomal subunits are assembled. In addition to its primary role in ribosome biogenesis, the nucleolus also plays roles in cellular stress responses, DNA damage and repair, and other processes (20). Nucleoli can be visualized by staining for fibrillarin, a component of rRNA processing machinery (21). As in wild-type animals, staining with anti-fibrillarin in elav > mRFP-HDL2-Q138 larvae revealed a single nucleolus in each nucleus. mRFP-HDL2-Q138 aggregates did not co-localize with the nucleolus, nor did aggregates consistently appear adjacent to the nucleolus. These data indicate that HDL2-Q138 aggregates and the nucleolus reside in separate domains within the nucleus (Supplementary Material, Fig. S3).

We next investigated whether mRFP-HDL2-Q138 interrupts nuclear transport, a process recently shown to be defective in frontotemporal dementia and amyotrophic lateral sclerosis 1 FTD/ALS1 models (22–24). Neuronal cell bodies are tightly packed in the brain, making it challenging to target just one nucleus for analysis. Therefore, we expressed mRFP-HDL2-Q138 or mRFP-HDL2-Q15 in muscle cells and analyzed nuclear import with fluorescence recovery after photobleaching (FRAP) experiments. Drosophila larval muscle fibers are large, multi-nucleate cells that are very accessible to FRAP. Using the mef2-GAL4 muscle driver, we co-expressed mRFP-HDL2-Q15 or mRFP-HDL2-Q138 and a genetically encoded fluorescent protein fused to a nuclear localization signal (NLS), GFP-NLS. GFP-NLS is concentrated in the nuclei of muscle cells. If pathogenic HDL2 interfered with nuclear import, we hypothesized that nuclear GFP would recover more slowly in larvae expressing mRFP-HDL2-Q15 as compared with mRFP-HDL2-Q15. However, FRAP experiments did not reveal any difference in fluorescence recovery time between these genotypes (Supplementary Material, Fig. S4). These results suggest that disruption of nuclear import is not likely to be a primary pathogenic mechanism in this HDL2 model.

Addition of a nuclear import or nuclear export tag alters localization of HDL2

Given that soluble and aggregated mRFP-HDL2-Q138 localize to the nuclei of neurons, we examined if localization played a role in toxicity. Nuclear localization has been shown to be critical for disease pathogenesis in HD, spinocerebellar ataxia 1 (SCA1) and other polyQ disorders. One strategy would be to modify intrinsic NLS or nuclear export sequences (NES), but we could not identify any canonical NLS or NES within the HDL2 protein using bioinformatics approaches. To redirect HDL2, we created transgenic Drosophila expressing HDL2 where we added a NLS or NES tag to the C terminus of HDL2-Q15 and HDL2-Q138, along with a GFP tag at the N terminus. Constructs expressing GFP-HDL2-Q15 and GFP-HDL2-Q138 with an NLS, NES, or no tag were inserted into the same attP2 genetic docking site using the phiC31 targeted integration system, which ensures equal expression among all transgenic lines using the UAS system (Fig. 4A, D and G). Semi-quantitative RT-PCR of HDL2 confirmed that the lines

Table 1. HDL2-Q138 localization is distinct from either HTT-Q138 or a pure polyQ tract in Drosophila

<table>
<thead>
<tr>
<th></th>
<th>Nucleus</th>
<th></th>
<th>Cytoplasm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregates (large)</td>
<td>Aggregates (small)</td>
<td>Soluble</td>
<td>Aggregates (large)</td>
</tr>
<tr>
<td>HDL2-Q138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Muscle</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epithelial cells</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HTT-Q138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+++</td>
</tr>
<tr>
<td>Muscle</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+++</td>
</tr>
<tr>
<td>Epithelial cells</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+++</td>
</tr>
<tr>
<td>Q127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Muscle</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epithelial cells</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

HTT-Q138 remains strictly cytoplasmic in Drosophila. Q127 alone does not localize to the cytoplasm in epithelial cells or neurons. Q127 is occasionally observed in the cytoplasm of muscle tissue, but only visible as small puncta. In contrast, HDL2-Q138 forms large nuclear inclusions in all cell types tested, except salivary gland epithelial cells, and also forms small aggregates or puncta in cytoplasm.
Lines obtained from these site-directed injections do not express transgenes as strongly as some of the lines obtained by integration at random sites. Hence, dose-dependent metrics like lethality differed from the mRFP-HDL2-Q138 high-expression lines used in the previously described experiments. These site-directed lines will be denoted with superscript “attP2” to differentiate them from the random insertion lines described above.

First, we assayed if NLS and NES tags successfully redirected the HDL2 protein. We examined several tissue types, including the large, multinucleate larval muscle cells. Using the muscle driver mef2-GAL4, the expression of GFP-HDL2-Q138 attP2 results in large nuclear aggregates, along with small aggregates in the cytoplasm (Fig. 4B). The expression of GFP-HDL2-Q138-NLS attP2 also leads to nuclear aggregate formation, but lacks any detectable cytoplasmic HDL2-Q138 protein (Fig. 4E). In contrast, no nuclear fluorescence is observed in animals expressing GFP-HDL2-Q138-NES attP2, and the protein is visible as only cytoplasmic aggregates (Fig. 4H). These experiments demonstrate that the NLS and NES tags redirect the HDL2 protein as intended.

Nuclear localization and polyQ tract expansion are required for HDL2 toxicity in muscles

After determining that the NLS and NES tags target the protein to the desired compartments, we investigated the effects of nuclear or cytoplasmic localization on toxicity. Using the mef2-GAL4 muscle driver, the expression of GFP-HDL2-Q138 attP2 is lethal at the third instar larval stage (Fig. 4C). Dead larvae appear dark colored, suggesting that necrotic cell death is occurring. Toxicity is exacerbated with nuclear localization. Animals expressing mutant HTT induces formation of excess synaptic boutons (arrowheads). No polyQ protein is visible at the synapse in elav–Q127-HA larvae. No synaptic overgrowth is detected in these animals. NMJ from a control elav–GFP larvae. PolyQ proteins are labeled red (RFP-HDL2-Q138, RFP-HTT-Q138 or Q127-HA), anti-elav is shown in dark blue to label neuronal nuclei, and anti-HRP staining for labeling axons and synaptic terminals is cyan. Images A–C are single confocal planes, while images D–J are z-stacks.
Figure 4. Addition of a nuclear import or export tag alters localization and toxicity of HDL2 polyQ proteins. (A) Schematic of GFP-HDL2-Q138attP2, the protein resulting from expression of the unmodified construct in the attP2 genetic docking site. The GFP label is shown in green and the polyQ stretch in magenta. (B) The HDL2 polyQ protein aggregates in the nucleus, but is also visible in the cytoplasm (arrowheads) of muscles in mef2\textsuperscript{>:-GFP-HDL2-Q138attP2} larvae. (C) mef2\textsuperscript{>:-GFP-HDL2-Q138attP2} expression causes third instar lethality. (D) Schematic of GFP-HDL2-Q138-NLSattP2, the protein resulting from expression of the NLS-tagged construct. (E) The cytoplasmic polyQ protein contribution is completely absent in mef2\textsuperscript{>:-GFP-HDL2-Q138-NLSattP2} larvae, and the protein is found exclusively in the nucleus. (F) mef2\textsuperscript{>:-GFP-HDL2-Q138-NLSattP2} expression results in lethality during the second instar stage. (G) Schematic of GFP-HDL2-Q138-NESattP2, the protein resulting from expression of the NES-tagged construct. (H) The nuclear polyQ protein contribution is completely ablated in mef2\textsuperscript{>:-GFP-HDL2-Q138-NESattP2} larvae. (I) Nuclear export of the polyQ protein suppresses lethality and mef2\textsuperscript{>:-GFP-HDL2-Q138-NESattP2} animals are adult viable. Images are single confocal planes.

abnormalities such as wing inflation defects or motor incoordination detected. We also expressed non-pathogenic GFP-HDL2-Q15attP2 in muscle. Muscle expression of all Q15 variants (GFP-HDL2-Q15attP2, GFP-HDL2-Q15-NLSattP2 and GFP-HDL2-Q15-NESattP2) were adult viable. Hence, nuclear localization alone is not sufficient for toxicity. Instead, HDL2 toxicity requires both nuclear localization and the expanded polyQ tract.

Nuclear localization of HDL2-Q138 is required for neuronal toxicity

We next expressed GFP-HDL2-Q138attP2, GFP-HDL2-Q138-NLSattP2 and GFP-HDL2-Q138-NESattP2 in the Drosophila eye using

the GMR-GAL4 driver. The eye is composed of hundreds of ommitidial, each containing eight photoreceptor neurons (Fig. 5A). This highly organized structure provides a conducive system to study neurodegenerative processes (25). The expression of GFP-HDL2-Q138attP2 does not result in any obvious defects in eye anatomy (Fig. 5B). GFP-HDL2-Q138-NESattP2 expression is also indistinguishable from controls (Fig. 5D). However, directing the HDL2 polyQ protein to the nucleus (GFP-HDL2-Q138-NLSattP2) causes a severe rough eye degenerative phenotype, indicating that nuclear localization of expanded HDL2 enhances toxicity (Fig. 5C).

To examine how nuclear localization or export affects toxicity of the HDL2 protein in the CNS, we used elav-GAL4 to express GFP-HDL2-Q138attP2, GFP-HDL2-Q138-NLSattP2 or GFP-HDL2-Q138-NESattP2 throughout the nervous system. Neuronal expression of all three lines is adult viable due to the lower expression of genes from the attP2 site. However, within days of eclosion, motor defects begin to appear. To measure motor defects, we employed a climbing assay, which quantified the percentage of flies that were able to climb two centimeters or more in a 30-s time period (Fig. 6A and Supplementary Material, Movie S1). Healthy flies exhibit negative geotaxis, immediately climbing upward when shaken to the bottom of a vial. One day after eclosion, flies expressing GFP-HDL2-Q138-NLSattP2 exhibit normal climbing behavior. However, one week after eclosion, flies with HDL2-NLS exhibit severely impaired motor function. Flies expressing the unmodified or NES constructs had no impairments at one week of age. By three weeks of age, GFP-HDL2-Q138attP2 flies failed to climb, while GFP-HDL2-Q138-NESattP2 flies performed as well as controls. By week five, the climbing ability of HDL2-Q138-NESattP2 flies remained indistinguishable from controls. Hence, nuclear localization of GFP-HDL2-Q138 accelerates the onset of motor dysfunction, while nuclear export completely suppresses motor defects caused by GFP-HDL2-Q138 expression in the climbing assay.

Nuclear localization or nuclear export of HDL2-Q138 has an equally robust effect on lifespan (Fig 6B). At 29°C, the median survival of control flies is 43 days. When GFP-HDL2-Q138attP2 is expressed in neurons with the elav-GAL4 driver, median survival drops to 28 days. Nuclear localization further reduces lifespan, with GFP-HDL2-Q138-NLSattP2 flies displaying a median survival of 10 days. In contrast, nuclear export of HDL2 completely rescues the lifespan reduction. The median survival for flies expressing GFP-HDL2-Q138-NESattP2 is 45 days, similar to controls. In conclusion, nuclear localization of HDL2-Q138 enhances toxicity in multiple tissue types (muscles, eyes and neurons), while removal of HDL2-Q138 from the nucleus completely suppresses toxicity.

Discussion

We have generated and characterized a Drosophila HDL2 model to examine how an HDL2 polyQ protein may exert toxicity. In addition, we compared pathology with a Drosophila HD model or strains that express a pure polyQ tract. Our findings indicate that nuclear localization of HDL2-Q138 is required for toxicity and that the HDL2 and HTT polyQ proteins cause toxicity in different cellular compartments in Drosophila.

In the current study, we found that expanded HDL2-Q15 is not toxic to Drosophila. HDL2-Q15 protein remains diffuse throughout the nucleus and the cytoplasm in cultured S2 cells, neurons, epithelial cells and muscles (Fig. 2A, E and I). Concentrating it in the nucleus with an NLS tag does not cause toxicity, suggesting that the HDL2 unexpanded protein is non-
Figure 5. Nuclear localization of HDL2-Q138^{attP2} causes a rough eye degenerative phenotype. (A) GMR>GFP animals express a soluble GFP under control of the GMR-GAL4 eye driver and were used as a control for GFP expression. (B) GMR>GFP-HDL2-Q138^{attP2} eyes appear normal. (C) Nuclear localization of the polyQ protein induces a rough eye phenotype in GMR>GFP-HDL2-Q138-NLS^{attP2} animals. In addition to pigmentation defects, dark necrotic patches (arrowheads) are visible on the surface of the eye. (D) GMR>GFP-HDL2-Q138-NESS^{attP2} eyes appear normal.

Figure 6. Nuclear localization of HDL2-Q138 accelerates motor dysfunction onset and reduces lifespan, while nuclear export restores motor function and lifespan to control levels. elav > GFP-HDL2-Q138^{attP2}, elav > GFP-HDL2-Q138-NLS^{attP2} and elav > GFP-HDL2-Q138-NESS^{attP2} flies were briefly vortexed to knock them to the bottom of the vial, and their climbing ability (climb > 2 cm in 30 s) was compared to control elav flies at the indicated age. Nuclear localization flies have dramatically impaired motor function by 1 week. At 3 weeks, elav > HDL2-Q138^{attP2} flies fail to climb. For nuclear export flies, climbing ability remains indistinguishable from controls at all time points measured. For each time point, mean percent of flies climbing ± SEM are: 1 day: control, 100% ± 0; GFP-HDL2-Q138, 98% ± 2.2; GFP-HDL2-Q138-NLS, 98% ± 2.2; GFP-HDL2-Q138-NESS, 96% ± 2.9; not significant via ANOVA with Tukey’s post hoc test. 1 week: control, 96% ± 2.9; GFP-HDL2-Q138, 100% ± 0; GFP-HDL2-Q138-NLS, 6% ± 3.1; GFP-HDL2-Q138-NESS, 96% ± 2.7; GFP-HDL2-Q138-NLS climbing ability is significantly impaired compared to all other groups, P < 0.0001 via ANOVA with Tukey’s post hoc test. 3 weeks: control, 97% ± 2.9; GFP-HDL2-Q138, 0% ± 0; GFP-HDL2-Q138-NLS, 98% ± 2.0; GFP-HDL2-Q138 climbing ability is significantly impaired compared with all other groups, P < 0.0001 via ANOVA with Tukey’s post hoc test. 5 weeks: control, 83.71% ± 6.4; GFP-HDL2-Q138-NESS, 87.5% ± 5.4; not significant via Student’s t test. (B) elav > GFP-HDL2-Q138^{attP2}, elav > GFP-HDL2-Q138-NLS^{attP2} and elav > GFP-HDL2-Q138-NESS^{attP2} male flies were reared at 29 °C and lifespan recorded. Neuronal expression of GFP-HDL2-Q138^{attP2} significantly reduces lifespan compared with control flies (median survival 28 versus 43 days, P < 0.0001 via Mantel-Cox test). Nuclear localization significantly reduces lifespan compared with both controls and elav > GFP-HDL2-Q138^{attP2} animals (median survival 10 days, P < 0.0001 via Mantel-Cox test). Nuclear export completely suppresses toxicity, and lifespan is not significantly different between control and elav > GFP-HDL2-Q138-NESS^{attP2} flies (not significant via Mantel-Cox test).
pathogenic. While unmodified (HDL2-Q138mtrp) and nuclear-targeted (HDL2-Q138-NLSmtrp) versions of expanded HDL2 are pathogenic in muscle tissue, all HDL2-Q15mtrp constructs are viable to adulthood. Similarly, no defects are observed with neuronal expression of unmodified or NLS-tagged HDL2-Q15mtrp. Hence, the combination of nuclear localization and pathogenic polyQ expansion is required for pathology in Drosophila. In contrast to HDL2-Q15, expression of HDL2-Q138 is highly toxic. Neuronal expression from the strongest HDL2 lines (generated through random P-element insertion) causes early pupal lethality, while low-expressing lines (generated from attP2 site-direction insertion) are adult viable with progressive onset of motor defects and eventual lethality. This dose-dependent lethality agrees what has been observed in Drosophila HD models (13).

This study required the use of long polyQ repeat lengths within HDL2, as this accelerates toxicity and is needed for animals with short lifespans like Drosophila. The generation of animal models with CAG stretches longer than the median repeat length of the patient population is a common approach in the polyQ field. For example, studies sampling thousands of HD patients have found the median HTT CAG repeat length is 43–46 (26–31). In contrast, most HD mouse models are generated using CAG lengths near or over 100 repeats, including the popular R6/2 model, which has a repeat length of around 150 (52–54). Similar ranges are found in Drosophila models of HD, where pathogenic HTT constructs contain up to 152 repeats (13,53–60). These animal models have accelerated onset of phenotypes, and may induce distinct pathologies than observed in human neurons that have expressed the toxic protein for decades.

In Drosophila neurons, the cellular localization of HDL2-Q138 suggests mechanisms of toxicity are likely distinct from what we observed previously in a HD model we created (13,56). The Drosophila HD model used in these experiments contains a 588-amino acid fragment spanning exons 1–12 of the human HTT locus, which corresponds to a known cleavage product of full-length HTT. In neurons, HDL2-Q138 aggregates in the nucleus, often forming one large inclusion (Fig. 2B and 3A). This observation is similar to findings from HD and HDL2 patient brain tissue, where aggregated protein often forms one large nuclear inclusion, although multiple inclusions per nucleus are occasionally found (2,61). The nuclear aggregation of HDL2-Q138 contrasts with several Drosophila models of HD, where pathogenic HTT remains confined to the cytoplasm (Fig. 2C, G, K and 3B) (13,54,56). Furthermore, while HTT-Q138 forms large axonal aggregates, HDL2-Q138 is trafficked down the axon as small puncta (Figs. 3D and E). Despite these differences in neurons, HDL2-Q138 and HTT-Q138 share a similar distribution pattern in epithelial cells of the salivary gland, where both form cytoplasmic aggregates (Fig. 2J and K). It will be interesting to determine if salivary glands lack important nuclear factors for HDL2 that normally trigger nuclear aggregation, or alternatively express cytoplasmic proteins that promote aggregation within this compartment before nuclear accumulation can occur. While these findings represent data from one Drosophila HD model, it will be important to test additional disease-relevant HTT species in the future, including those where the protein is forced into the nucleus with an NLS tag. Furthermore, it is important to note that mutant HTT is not cleaved and processed in Drosophila the same way it is in mammalian neurons (13). It would, therefore, be worthwhile to study the similarities and differences between HDL2 and full-length HTT in mammalian models as well. Ultimately, modeling the polyQ diseases in a variety of systems will allow for deeper inquiry into mechanisms of toxicity.

In addition to differences from HTT-Q138, HDL2-Q138 localization is also distinct from a pure polyQ tract protein. While Q127 and HDL2-Q138 form nuclear aggregates in neurons, Q127 is not transported along axons (Fig. 2B and D and 3A, C, D and F). In muscle, both form nuclear aggregates, but HDL2-Q138 is also observed as puncta in the cytoplasm, while Q127 is rarely observed outside of the nucleus (Fig. 2F and H). In epithelial cells of the salivary gland, HDL2-Q138 aggregates in the cytoplasm, while Q127 aggregates in the nucleus (Fig. 2J and L). As such, HDL2-Q138 appears distinct from either pathogenic HTT or an expanded polyQ tract in its aggregation pattern across a population of cell types in Drosophila (Table 1).

Distinctions between HDL2-Q138 and HTT-Q138 are also apparent at synapses of glutamatergic motor neurons. In our Drosophila HD model, HTT-Q138 accumulates locally at the NMJ and induces a synaptic overgrowth phenotype characterized by supernumerary satellite boutons (Fig. 3H). In contrast, HDL2-Q138 can be found as small puncta at the NMJ, but does not accumulate in appreciable quantities or form large aggregates (Fig. 3C). Neuronal expression of HDL2-Q138 does not lead to impaired synaptic function that we can measure through physiological analysis (Supplementary Material, Fig. S2). It is possible that physiological deficits are occurring in the central nervous system, or would appear at more mature synapses. Since these experiments were conducted using a neuronal driver, only the presynaptic partner (the neuron) expressed HDL2-Q138, while the postsynaptic partner (the muscle) did not. Given HDL2-Q138 is expressed both pre- and post-synaptically, it will be interesting to examine postsynaptic effects of HDL2 expression in future studies.

Experiments redirecting HDL2 into or out of the nucleus demonstrate that nuclear mechanisms are critical to HDL2-Q138-induced toxicity. NES or NLS tagging redistributes the HDL2-Q138 protein to the desired compartment (Fig. 4B, E and H). This is important to note in light of research in HD models, where the addition of NES tags reduces nuclear contribution of HTT, but some nuclear aggregates are still present (62,63). The SV40 NLS sequence and modified PKI NES sequence used in our experiments alter the localization of all detectable HDL2 protein. The effect of nuclear localization or nuclear export of HDL2-Q138 is consistent across various tissues. The expression of an unmodified HDL2-Q138mtrp is not sufficient to cause eye degeneration, but targeting the protein to the nucleus induces a rough eye degenerative phenotype (Fig. 5). In muscle tissue, nuclear localization of HDL2-Q138 accelerates lethality, while nuclear export completely suppresses toxicity induced by the protein (Fig. 4C, F and I). In neurons, nuclear localization accelerates onset of motor dysfunction and significantly reduces lifespan compared with animals expressing the untagged HDL2-Q138mtrp (Fig. 6). Strikingly, motor function and lifespan are fully restored to control levels when the protein is confined to the cytoplasm. This complete suppression demonstrates that nuclear localization of an expanded HDL2 polyQ protein is required for the manifestation of pathology in the Drosophila model.

The importance of nuclear localization to HDL2 toxicity is interesting given that nuclear localization exacerbates toxicity in HD, but cytoplasmic mechanisms also play a role in pathogenesis. Addition of an NLS to HTT-Q144 accelerates onset of disease phenotypes in transgenic mice. However, disease pathogenesis is not exclusively due to nuclear (e.g. transcriptional) aberrations, as affected neurons have dark and degenerating organelles and swollen axons, indicating cytoplasmic dysfunction as
well. Furthermore, addition of an NES tag to HTT-Q144 does not fully suppress mutant phenotypes (63). Similar results were obtained in vitro. Addition of an NLS tag to a fragment of HTT-Q75 doubled the percent of cells lost, while NES-tagged HTT-Q75 reduced cell loss, but did not fully suppress toxicity (62). Finally, multiple Drosophila models of HD display pathogenesis without nuclear localization of the pathogenic HTT protein, further demonstrating that cytoplasmic mechanisms are sufficient to induce toxicity in these HD models (13,54,56). These data demonstrate that although nuclear localization of mutant HTT is detrimental, both nuclear and cytoplasmic events contribute to pathogenesis. This contrasts with our findings for pathogenic HDL2, which induces toxicity only when the protein accumulates in the nucleus.

The toxic contribution of nuclear versus cytoplasmic protein load has also been studied in other polyQ disease models. Similar to what has been observed in HD, nuclear localization exacerbates phenotypes in MJD model mice. However, nuclear export does not completely suppress toxicity (64). In contrast, nuclear localization is essential for toxicity in SCA1. In transgenic mouse models of SCA1, expanded ataxin-1 localizes to the nucleus, and animals exhibit motor defects followed by atrophy or loss of Purkinje cells (65,66). When expanded ataxin-1 is blocked from nuclear entry, toxicity is fully suppressed, with no apparent behavioral defects or neuropathology (67). Nuclear mechanisms are also important to disease pathogenesis in dentatorubro-pallidoluysian atrophy (DRPLA). DRPLA patients and transgenic mouse models present with nuclear accumulation of atrophin-1. Cell culture experiments show that directing expanded atrophin-1 to the nucleus increases toxicity, while mutating the NLS restores cell loss to control levels (68). Nuclear localization is not required for toxicity in all polyQ diseases. In the case of spinocerebellar ataxia 2 (SCA2), pathology occurs without nuclear ataxin-2 protein. In contrast to patients with HDL2, HD, SCA1, or MJD, postmortem brain tissue from patients with SCA2 does not reveal polyQ neuronal nuclear inclusions, nor is expanded ataxin-2 observed in the nucleus in a SCA2 mouse model (69). Current hypotheses suggest that SCA2 pathogenesis may arise from impaired calcium signaling or dysfunctional RNA regulation and transport, but the mechanisms of cellular toxicity remain unclear (70–73).

While HDL2 patients’ symptoms and neuropathology mimic HD, dysfunction at the molecular level may be reminiscent of another polyQ disorder, SCA1, where nuclear localization of the pathogenic protein is required for toxicity. The mechanism of nuclear toxicity in HDL2 remains an open question. Staining with anti-fibrillarin demonstrates that the expanded HDL2-Q138 protein does not localize to the nucleolus (Supplementary Material, Fig. S3). This observation matches findings from brain tissue of patients with HD, DRPLA, SCA1 and MJD, where the polyQ proteins tend to form single large inclusions that remain distinct from the nucleolus (61,74–76). Also, FRAP experiments suggest that HDL2-Q138 does not appear to alter nuclear transport (Supplementary Material, Fig. S4), a pathogenic mechanism that is emerging in models of FTD/ALS1 (22–24).

There are a variety of mechanisms by which nuclear localization of pathogenic HDL2 may exert toxicity. One potential mechanism is transcriptional dysregulation, a well-established pathogenic pathway in the polyQ disorders [suggested reviews: (77–80)]. A comprehensive transcriptional profiling of HDL2 mutant animals via RNA sequencing could provide a starting point to delve deeper into mechanisms of polyQ toxicity in HDL2. Similarly, epigenetic changes may play a role in HDL2 pathogenesis. This pathway has been studied in depth in polyQ diseases, trinucleotide repeat expansion disorders, and other neurodegenerative diseases, such as Alzheimer’s and Parkinson’s (81–86). It also represents an attractive therapeutic approach given several pharmacological agents are available to modify epigenetic state (such as histone deacetylase inhibitors). Since DNA damage has been established as playing a role in a variety of neurodegenerative diseases, HDL2 nuclear localization could also disrupt this process (87–90). HDL2 nuclear aggregates or monomers could sequester or otherwise interfere with other nuclear proteins. For example, experiments in a SCA1 models show that expanded ataxin-1 causes a redistribution of the nuclear matrix-associated domain containing promyelocytic leukemia protein (75).

The cause of human pathology in HDL2 remains an open question. Several pathogenic pathways have experimental support in the field, including JPH3 loss of function, CUG RNA toxicity, and polyQ toxicity (91). Evidence from both HDL2 mouse models and HDL2 patient brain tissue suggests that a polyQ protein may be involved in disease pathology. First, an antisense CAG transcript has been identified in human brain tissue (normal repeat length transcript) and an HDL2 mouse model (expanded length transcript) (4,10). While the full-length transcript has not been isolated from human patient brain tissue, the possibility remains that the transcript is produced in neuronal populations other than frontal cortex, the only brain area tested (4). The nature of neurodegenerative diseases makes this a particularly difficult technical method, since the main neuronal populations of interest have been lost to disease. Additional evidence supporting a polyQ pathology comes from the observation that ubiquitinated neuronal inclusions have been found in human HDL2 patient brain tissue, as well as brain tissue from HDL2 mouse models (2,10). Immunohistochemistry on human patient and mouse model brain sections have confirmed the inclusions can be stained with 1C2, an antibody that recognizes polyQ proteins. Inclusions in the mouse model were also tested with the 3B5H10 antibody, a more specific polyQ antibody (10). Hence, the multimodal pathogenesis of HDL2 may involve contribution from a toxic polyQ protein (91,92), although other mechanisms likely contribute to the disease mechanism as well.

In conclusion, these experiments demonstrate that nuclear localization of the HDL2 polyQ protein is required for pathogenesis in a Drosophila model of the disorder. This contrasts with a Drosophila HD model expressing an N-terminal fragment of HTT, where toxicity occurs through cytoplasmic mechanisms. Confining HDL2-Q138 to the cytoplasm completely suppresses toxicity in a variety of tissue types tested, including neurons. In addition, nuclear export restores motor function and lifespan to control levels. In contrast, adding a NLS to HDL2-Q138 enhances pathology and decreases lifespan compared to unmodified HDL2-Q138. Thus, although similar neurological profiles are found in HD and HDL2 patients, HDL2 pathology may principally occur due to its accumulation within the nucleus. This contrasts with HD, where both nuclear and cytoplasmic pathology have been well documented. Additional research comparing our HDL2 Drosophila model with other Drosophila models of HD, along with comparing these polyQ proteins in mammalian models, may provide insight into mechanisms of toxicity and reveal additional similarities and differences between HD and HDL2.

Materials and Methods

JPH3 antisense (HDL2) gene synthesis

Sequences were selected based on the transcripts identified by 5’ RACE experiments in BAC-HDL2 model mice (4,10). The full-
length isoform was used in these experiments. No HGNC-approved gene symbols have been determined for the antisense CAG product. The antisense gene at the JPH3 locus that contributes to toxicity in HDL2 is referred to as HDL2, and the polyQ protein product as HDL2. HDL2 constructs with either 15 or 138 CAG repeats (HDL2-Q15 and HDL2-Q138) were synthesized and cloned into the pENTR1A Gateway® entry vector by Epoch Life Science.

Drosophila stocks and transgenics

All Drosophila strains were cultured on standard media at 25 °C. GAL4 driver lines (elav, mef2 and pickpocket) and GFP control lines (UAS-GFP and UAS-GFP-NLS) were obtained from the Bloomington Drosophila Stock Center. Generation of HD model flies was described previously (13). To generate flies carrying HDL2 transgenes at random insertion sites, pTW (in pENTR1A were cloned into pUASt vectors pTRW, pTGW and Gateway® cloning system. Constructs were injected into Drosophila embryos (genotype w¹¹¹⁸) by BestGene. High-expression lines selected for analysis were mapped to the third chromosome (BestGene). For nuclear localization and nuclear export experiments, HDL2 constructs were modified at the 3’ end with the addition of NLS (CCTAAGAGAAAGAGAAAGTT) or NES (AACATTAAAGAACGCGGCTGAAATTTGCGGGCCTGGATATT) sequences. Using the Gateway® system, constructs were cloned into the pPGW (Drosophila Genomics Resource Center) vector and injected into Drosophila embryos (genotype y¹ w¹¹¹⁸; H(CaryP)attP2) by BestGene.

Immunohistochemistry

Wandering third instar larvae reared at 25°C and dissected in HL3.1 solution, containing (in mM): 70 NaCl, 5 KCl, 4 MgCl₂, 10 NaHCO₃, 5 Trehalose, 115 sucrose, 5 HEPES-NaOH, pH 7.2 and 0.2 Ca²⁺. Larvae were fixed for 30 min in 4% formaldehyde, permeabilized for 30 min in 0.1% Triton-X100 in PBS (PBX) and blocked for 1 h in 2% normal goat serum in PBX. The following antibodies were used: rat anti-elav (DSHB), mouse anti-lamin C (DSHB), FITC conjugated rabbit anti-HA (Abcam), Alexa Fluor® 467 goat anti-HRP (Jackson ImmunoResearch), Alexa Fluor® 405 goat anti-rat (Abcam) and Alexa Fluor® 405 goat anti-mouse (Life Technologies). Larvae were mounted in Vectashield® anti-fade mounting medium or Vectashield® anti-fade mounting medium with DAPI (Vector Laboratories). Images were captured with a Zeiss Pascal laser scanning confocal microscope (Carl Zeiss MicroImaging, Inc.) using the accompanying Zeiss PASCAL software or a spinning disk confocal microscope (Carl Zeiss MicroImaging, Inc.) using Perkin Elmer Volocity software.

Eye imaging

Drosophila eyes were photographed using a Zeiss Stemi 2000-C stereo microscope (Carl Zeiss MicroImaging, Inc.) fitted with a SPOT ideal CMOS camera (SPOT Imaging) and captured with the accompanying SPOT Imaging software.

Lifespan assay

Drosophila viability assays were performed on male flies aged at 29°C, with 10 flies per vial, and transferred every 2–3 d. Fifty flies per genotype were used.

Climbing assay

Male Drosophila were aged at 29°C, with no more than 10 flies per vial, and transferred every 2–3 d. At age 1 d, 1 week, 3 weeks and 5 weeks, flies were transferred to empty vials and left to recover for one h at room temperature. Flies were then briefly vortexed to knock them all to the bottom of the vial and their subsequent climbing was recorded. The percent of flies climbing above 2 cm in 30 s was used for analysis. Fifty flies per genotype were used.

Statistical analysis

Analysis of variance (ANOVA) with Tukey’s post hoc test (Fig. 6A), and the Mantel–Cox test (Fig. 6B) were used to determine statistical significance using Prism software (GraphPad).

OMIM reference numbers

Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim) reference numbers for the disorders described in this paper are as follows: (DRPLA) (#125370), frontotemporal dementia and/or amyotrophic lateral sclerosis 1 (#105550), (HD) (#143100), Huntington disease-like 2 (#606438), (MJD) (#109150), myotonic dystrophy 1 (#160900), (SCA1) (#164400), (SCA2) (#183090) and spinocerebellar ataxia 8 (#608768).

Supplementary Material

Supplementary Material is available at HMG online.

Acknowledgements

The authors thank Kayla Brown, Kendall Kiser, Ryan Littleton, Dina Volfsen and Kathryn Harris for experimental help. Stocks obtained from the Bloomington Drosophila Stock Center (funded by National Institutes of Health Grant P40OD018537) were used in this study. The antibodies against elav (developed by G.M. Rubin) and lamin C (deposited by P.A. Fisher) were obtained from the Developmental Studies Hybridoma Bank, created by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health and maintained at the University of Iowa, Department of Biology, Iowa City, IA 52242. The authors thank the Drosophila Genomics Resource Center (supported by National Institutes of Health Grant 2P40OD010949-10A1) for vectors (deposited by T. Murphy).

Conflict of Interest Statement. None declared.

Funding

This work was supported by the National Institutes of Health (grant numbers NS40296 and MH104536) and the JPB Foundation.

References

